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ABSTRACT 
This study evaluated six segmentation methods (clustering, 
flood-fill, graph-cut, colour-thresholding, watershed, and 
Otsu’s-thresholding) for segmentation accuracy and 
classification accuracy in discriminating Fusarium infected 
corn grains using RGB colour images.  The segmentation 
accuracy was calculated using Jaccard similarity index and 
Dice coefficient in comparison with the gold standard 
(manual segmentation method).  Flood-fill and graph-cut 
methods showed the highest segmentation accuracy of 77% 
and 87% for Jaccard and Dice evaluation metrics, 
respectively.  Pre-trained convolution neural network 
(CNN) and support vector machine (SVM) were used to 
evaluate the effect of segmentation methods on 
classification accuracy using segmented images and 
extracted features from the segmented images, respectively.  
The SVM based two-class model to discriminate healthy 
and Fusarium infected corn grains yielded the classification 
accuracy of 84%, 79%, 78%, 74%, 69% and 65% for graph-
cut, watershed, clustering, flood-fill, colour-thresholding, 
and Otsu’s-thresholding, respectively.  In pretrained CNN 
model, the classification accuracies were 93%, 88%, 87%, 
84%, 61% and 59% for flood-fill, graph-cut, colour-
thresholding, clustering, watershed, and Otsu’s-
thresholding, respectively.  Jaccard and Dice evaluation 
metrics showed the highest correlation with the pretrained 
CNN classification accuracies with R2 values of 0.9693 and 
0.9727, respectively.  The correlation with SVM 
classification accuracies were R2–0.505 for Jaccard and R2–
0.5151 for Dice evaluation metrics.  
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RÉSUMÉ 
Cette étude a permis d’évaluer six méthodes de segmentation 
(groupage [clustering], élimination des petites zones isolées [flood 
fill], segmentation graphique [graph-cut], seuillage de couleur 
[colour-thresholding], ligne de partage des eaux [watershed], et la 
méthode d’Otsu [Otsu’s-thresholding] utilisées pour déterminer la 
précision de segmentation et la précision de classification pour 
discerner les grains de maïs infectés par le Fusarium en utilisant 
des images couleur RVB. La précision de la segmentation a été 
calculée à l’aide de l’indice de similarité de Jaccard et du 
coefficient de Dice en comparaison avec l’étalon de référence 
(méthode de segmentation manuelle). Les méthodes Flood-fill et 
graph-cut ont montré la plus grande précision de segmentation de 
77 % et 87 % pour les paramètres d’évaluation de Jaccard et Dice, 
respectivement. Un réseau de neurones convolutif [CNN] 
préentraîné et une machine à vecteur de support (SVM) ont été 
utilisés pour évaluer l’effet des méthodes de segmentation sur la 
précision de la classification en utilisant les images segmentées et 
les caractéristiques extraites des images segmentées, 
respectivement. Le modèle à deux classes fondé sur le SVM pour 
distinguer les grains de maïs sains des grains infectés par le 
Fusarium a donné une précision de classification de 84 %, 79 %, 
78 %, 74 %, 69 % et 65 % pour les méthodes graph-cut, 
watershed, clustering, flood-fill, colour-thresholding et Otsu’s-
thresholding, respectivement. Dans le modèle CNN préentraîné, 
les précisions de classification étaient de 93 %, 88 %, 87 %, 84 %, 
61 % et 59 % pour les méthodes flood-fill, graph-cut, colour-
thresholding, clustering, watershed, et Otsu’s-thresholding, 
respectivement. Les paramètres d’évaluation de Jaccard et de Dice 
ont montré la plus forte corrélation avec les précisions de 
classification CNN préentrainées et avec des valeurs R2 de 0,9693 
et 0,9727, respectivement. La corrélation avec les précisions de 
classification de la SVM était d’un R2 de -0.505 pour les 
paramètres d’évaluation de Jaccard et d’un R2 de -0.5151 pour 
ceux de Dice.  
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INTRODUCTION 
Grain corn is the world’s highest-produced cereal crop, with 
production at 1.09 billion metric tonnes (Statistics Canada 
2020; Saldivar and Carrillo 2019).  Corn grown in fields 
possess high moisture content and warm temperature (25 - 
28°C) which are favourable for the growth of several fungal 
species.  The starch present in the grains serves as an 
excellent medium for their fast growth and development.  
The most common fungal species grown in corn grains are 
Fusarium graminearum, Fusarium culmorum and, 
Fusarium vertcilloides (Fiore et al. 2010; Kushiro 2008).  
These toxigenic fungi upon further favourable conditions 
produces secondary metabolites called mycotoxins, which 
remain stable in the grain for a long time.    
 One common mycotoxin produced by these Fusarium 
species is called deoxynivalenol (DON), which belongs to 
a group called trichothecenes.  Trichothecene mycotoxins 
are a group of over 148 structurally related compounds 
produced by the Fusarium species of which DON is the 
most common mycotoxin.  Several acute poisoning 
incidences have been linked to the consumption of 
Fusarium infected, in particular, DON contaminated foods 
(Pestka 2010).  
 Although many techniques like thin layer 
chromatography (TLC), high pressure liquid 
chromatography (HPLC) and gas chromatography (GC) 
exist for the detection of these fungal mycotoxin, these are 
not applicable for online evaluation in real time applications 
(Ran et al. 2013).  At present, random sampling is 
performed by picking probe samples from each truck and a 
subsample is taken from the probe samples for determining 
fungal infected grains or presence of DON.  This approach 
may not provide accurate information about the presence of 
Fusarium infected corn grains in the truck.  The accurate 
identification of healthy and infected grains from a whole 
batch of grains is nearly impossible by means of visual 
inspection (Agelet et al. 2012). Furthermore, to our 
knowledge, currently there is no technique available to 
identify and remove Fusarium infected corn grains during 
handling or storage or processing. The existing analytical 
techniques are very lengthy, time consuming and highly 
expensive.  
 Thus, image-based non-destructive methods could 
offer a solution for the efficient identification and removal  
of Fusarium infected  corn grains from the supply chain. 
Although there are many studies on the different imaging 
techniques to detect the fungal infections, especially 
aflatoxin contamination in corn, there are very limited 
studies to detect  Fusarium infection in corn (Priya and 
Manickavasagan 2021). 
 In any image-based classification method, image 
segmentation is the process of separating or dividing a 
digital image into different segments including the regions 
of interest (foreground) and background pixels. This 
process is crucial as it converts the image into a more useful 
data that would be easier to analyze. Image segmentation is 
the foremost step in image analysis and image 

classification. Segmentation assigns a label to every pixel in 
an image and pixels with the same label share similar 
characteristics or properties which will be extracted as 
features and utilized for classification model development. 
Poor segmentation will lose important feature information 
from the region of interest (ROI) or include wrong 
information from the background, either case the collected 
feature is not true information and ends up in wrong 
classification. There are several methods available for 
segmentation including histogram thresholding, colour 
thresholding, Otsu’s thresholding, clustering, region 
growing, mean shift, graph cut, local graph cut, watershed, 
edge detection based, object based, partial differential 
equation-based methods. However, there is no standard or 
accurate method that can be applied to all images. Based on 
the application and type of images, the segmentation 
method should be selected accordingly (Pal and Pal 1993). 
In most of the imaging-based agriculture and food 
applications, random segmentation methods are used, and 
various classification techniques are evaluated. When 
inaccurate features are extracted from the ROI through 
wrong segmentation method, the classification accuracies 
will be seriously affected.    
 The objective of this study was to evaluate the accuracy 
of six segmentation methods for touching and non-touching 
corn grains in RGB colour images and determine their 
impact on the classification accuracy to detect Fusarium 
infection.  
METHODOLOGY 
Sample collection   
Healthy and Fusarium infected corn grains harvested in the 
year 2017 were obtained from the    Ontario Ministry of 
Agriculture, Food and Rural Affairs (OMAFRA). The 
samples were precleaned manually to remove the husk, 
broken kernels and stored at -20 °C until image acquisition.  
Image acquisition 
The grain images were captured using single lens reflex 
digital camera Nikon D7500 with 5568×3712 image area 
(pixels) and complementary metal oxide semiconductor 
(CMOS) sensor. A black background was used for 
capturing the images to minimize the reflection. 
Touching and non-touching grains The RGB images of 
corn grains from both healthy set and Fusarium infected set   
were captured. The images had been labelled and were 
divided into two groups.   
 In the first group, the corn grains were arranged in a 
designed line pattern where all grains were separated from 
each other and had non-touching grains. Each image 
contained around 20 corn grains. For every 20 corn grains, 
the germ side and the endosperm side were captured 
separately. This was done to observe if there is any variation 
in the efficiency of the segmentation algorithms in detecting 
the germ portion of the corn kernels. The germ portion of 
the kernels slightly vary in colour (white to creamy white) 
when compared with the endosperm portion (bright to light 
yellow). The healthy kernels set comprised of 200 images 
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(100 with germ side, 100 with endosperm side). Similarly, 
the infected kernels set comprised of 200 images (100 with 
germ side and 100 with endosperm side). In the second 
group, the corn grains were randomly distributed without 
any specific pattern and had monolayer touching corn 
grains. Each image had around 100 corn grains. The 
endosperm and the germ side of the grains were captured 
separately. The images were taken for both the healthy and 
Fusarium infected corn grains. The healthy set and 
Fusarium infected set each comprised of 100 images, 50 
with germ side and 50 with endosperm side, respectively. 
Overall, the healthy kernel set (group 1 and 2) had 300 
images and infected kernel set (group 1 and 2) had 300 
images.   
Segmentation methods 
The most common segmentation methods that have been 
used for wide range of image based food applications  were 
chosen for this study. The images in the datasets were 
subjected to each of the segmentation methods and the 
segmented binary image and masked image were separately 
stored for evaluating similarity metrics. 
Gold standard segmentation Each image from the dataset 
(total 600 images) had been segmented by manual 
segmentation and was considered as the gold standard 
method. The boundary separating the background and 
foreground had been drawn manually for individual corn 
grains by encircling the regions of interest (ROI) to obtain 
a binary mask. The binary image was then applied on to the 
original image to get the segmented or masked image.  
Clustering segmentation Clustering is an unsupervised 
image segmentation technique. Based on the values 
initialized to the pixels, the algorithm classifies and groups 
the pixels into numerous clusters. The number of clusters 
can either be defined or undefined based on the user 
initialization. The algorithm trains itself using the existing 
data and identifies the clusters as the foreground, thus 
segmenting the objects of interest (Dhanachandra and 
Chanu 2017). A random number of clusters were initially 
chosen and each datapoint or pixel in the image was 
assigned to one of the clusters such that the distance 
between the pixel and cluster centre is minimum. The 
cluster centres were again recomputed at the end by taking 
the average of all the pixels in the cluster. This step was 
repeated until convergence was attained. 
Flood Fill based object segmentation This technique, also 
called the seed fill algorithm determines the regions in an 
image connected to an initialized node in a multi-
dimensional array. The algorithm identifies the connected 
nodes belonging to the ROIs and by the given target node 
and changes them to the replacement node till the boundary 
is reached. The flood-fill operation was performed based on 
the Euclidean distance from the start node and the tolerance 
was optimized for the healthy and Fusarium infected grains 
separately (Lee and Kang 2010). 
Graph cut segmentation This algorithm considers each 
image as a graph with terminals and links, thereby achieving 
faster segmentation. Every pixel is treated as node 

connected through weighted links. The probability of 
relations between similar nodes (intensity based) determine 
the weights of the links. The algorithm uses a max-flow 
min- cut method to determine the minimum cut with the 
smallest cost in polynomial time. Then the cut is made along 
the weaker links to split the pixels along the two terminals: 
the source and the sink, yielding the segmented image 
(Veksler 2008).     
Colour thresholding This algorithm was used to segment 
the ROIs by thresholding individual colour channels based 
on different colour spaces. A binary segmentation mask was 
created for each colour image. The colour channels were 
optimized in the RGB colour space by windowing the 
intensities of  colour channel and based on the three 
thresholds for each colour channel, the images were 
segmented (Kulkarni 2010).  
Watershed segmentation Watershed algorithm treats each 
image as a topographical surface with peaks and troughs. 
The peaks and troughs correspond to the intensities of the 
grey level of each pixel in the image. The regional minima 
are then identified, and a flooding process is simulated to 
determine the hierarchical queue. At the end, each pixel is 
assigned to a labelled region which depicts the segmented 
image (Bieniek and Moga 2000; Longzhe 2011). The colour 
image was read and converted into grayscale. The gradient 
magnitude was computed for the image as a segmentation 
function. The foreground and background of the object was 
marked, and the watershed transformation of the 
segmentation function was then computed. Watershed 
algorithm for image segmentation is one of the oldest 
methods that finds application as a powerful tool for 
segmenting objects and is advantageous mainly because it 
provides closed contours (Belaid and Mourou 2009).   
Otsu’s thresholding Otsu’s method is an automatic 
segmentation technique that identifies the optimal intensity 
threshold level after accounting the intensities of every 
pixel in an image. The threshold value distinguishes and 
assigns the pixels to either the foreground or background. 
The threshold value was determined by minimizing the 
intensity variance in the two classes after assigning each 
pixel. This technique is a discrete analog of Fisher’s 
Discriminant Analysis. The algorithm determines the 
threshold level such that the intensity variation between the 
two groups is maximum and that within each group is kept 
minimum (Sha et al. 2016). An automatic thresholding 
technique for segmenting the background objects from the 
corn germplasm was developed by modifying the Otsu’s 
algorithm using a probability theory. This thresholding 
method was found to perform better than the Otsu’s 
algorithm with high accuracy and also eliminated the 
misclassification that occurred in Otsu’s algorithm 
(Panigrahi et al.1995). 
Segmentation accuracy 
Though all the segmentation methods seemed to segment 
the grains, quantitative results are necessary to accurately 
identify the accuracy of each segmentation method. 
Therefore, segmentation evaluation metrics such as Jaccard 
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similarity index and Dice similarity coefficient were used to 
evaluate the accuracy of each segmentation method 
(Senthilkumaran and Vaithegi 2016; Skourt et al. 2018). 
The segmented mask from each method was applied on the 
original image to get the regions of interest. The 
segmentation accuracy was determined by comparing the 
segmented image with that of the gold standard. 
Jaccard similarity index Jaccard index evaluates the 
similarity between the segmented image and the gold 
standard and returns an index which is the ratio of similar 
pixels  to the total number of pixels in the two images 
(McAllister 2018). If the gold standard is considered as the 
ground truth (G) and the segmentation result as S, then 
Jaccard index can be given as 

  E = !(#Ո$)
!(#&$)

, (1) 

where A(.) corresponds to operation of counting amount, 
numerator corresponds to the total number of matching 
pixels and denominator corresponds to the total number of 
matching and mismatching pixels. 
Dice coefficient Dice coefficient is similar to Jaccard index 
except that it considers the similarity in pixels in both the 
images individually and compares it with the total number 
of pixels in the images (Skourt et al. 2018). If the gold 
standard is considered as the ground truth (G) and the 
segmentation result as S, then Dice coefficient is given as   

 E = !∗	$(&Ո')
$(&)')

, (2) 

where numerator corresponds to the total number of 
overlapping or matching pixels in both the images and the 
denominator corresponds to the total number of pixels in 
both the images. Jaccard metrics penalises every instance of 
mismatched pixels and depicts the worst-case scenario 
whereas Dice metrics returns the average performance of 
the algorithm. Both the metrics were applied to each of the 
segmentation algorithms for every image.   
Classification models 
Support vector machine model The segmented images of 
each of the methods were processed further for feature 
extraction and classification in MATLAB R2019b 
software. A total of 9 colour features and 13 geometric 
features were extracted from each segmented image (Table 
1) and used to develop a classification model based on 
support vector machine (SVM) multiclass classifier using 
the image category classifier. The model was first trained 
with the images in the training set and the accuracy was 
determined by plotting a confusion matrix between the true 
and predicted classes. Then, the images in the validation set 
were evaluated with the developed model and the accuracy 
was determined by plotting a confusion matrix. The mean 
accuracy of the classification model in discriminating 
between the healthy and Fusarium infected corn grains was 
finally determined. 
Pre-trained CNN model In recent years, research has been 
focused on extracting the deep features from pretrained 
convolutional neural networks (CNNs) to train machine 
learning classification models. These trained classifiers are 

Table 1. Features extracted from the images of healthy and Fusarium infected corn grains. 
Features Description 
Colour Features Mean R Measure of average red intensity (0 to 255) in RGB colour space 

Mean G Measure of average green intensity (0 to 255) in RGB colour space 
Mean B Measure of average blue intensity (0 to 255) in RGB colour space 
Mean H Measure of average hue (0 to 360°) in HSI colour space 
Mean S Measure of average saturation (0 to 1) in HSI colour space 
Mean I Measure of average intensity (0 to 1) in HSI colour space 
Mean L* Measure of average lightness (0 to 100) in L*a*b* colour space 
Mean a* Measure of average red and green pixels (-128 – 127) in L*a*b* colour space 
Mean b* Measure of average blue and yellow pixels (-128 – 127) in L*a*b* colour space 

Geometric 

features 

Centroid X and y coordinates of the center of mass 
Major Axis 

Length 

Measure of the length of major axis of the ellipse, in pixels 
Minor Axis 

Length 

Measure of the length of minor axis of the ellipse, in pixels 
Eccentricity Ratio of the distance between foci of the ellipse and major axis length 
Filled Area Measure of number of on pixels in filled image 
Area Measure of actual number of pixels in the region 
Perimeter Measure of the distance around the boundary of the region 
Convex area Measure of the number of pixels in convex image 
Extent Measure of ratio of pixels to pixels in the smallest box containing the region 
Max Feret 

Diameter 

Max distance between any 2 boundary points on the vertices of convex hull that 

encloses the object Min Feret 

Diameter 

Min distance between any 2 boundary points on the vertices of convex hull that encloses 

the object EquivDiameter Measure of the diameter of a circle with the same area as the region 
Solidity Proportion of the pixels in the convex area that are also present in the region 

All geometric features are pixels, returned as a scalar. 
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further used for image classification. The established 
pretrained CNN architectures include AlexNet, GoogleNet, 
VGG-16 etc., which are opted for deep feature extraction 
for image classification (Yuheng and Hao 2017). Teachable 
Machine by Google, a web-based tool that is utilized for 
quickly training a deep learning image classification model 

was used in this study. This model is based on TensorFlow 
and uses a technique called transfer learning where the 
model would be pre-trained on a large dataset and the 
convolution layers are trained for accurate feature 
extraction. Only few layers like epoch and learning rate 
needs to be optimized as per specific model requirements.  
The classification efficiency of individual segmentation 
method was determined with the segmented images using 
this pre-trained model (80:20 training:test). For 
comparison, the classification accuracy of original images 
(without segmentation) was also determined in the same 
approach. 
Statistical analysis 
The effect of segmentation method, grain type and grain 
arrangement on segmentation accuracy was analyzed by 
three-way analysis of variance (ANOVA) method using R 
studio software (version 3.6.1). The post hoc Tukey HSD 
test with a 0.05 level of significance was performed to 
analyze if the independent variables had significant 
differences on the segmentation accuracy. The differences 
within the levels under each segmentation evaluation 
metrics were tested using the least significant difference 
(LSD) method of comparison of means. 
RESULTS AND DISCUSSION 
Evaluation of segmentation methods 
The sample images from healthy and Fusarium infected 
corn grain groups are shown in Fig 1.        
Gold standard segmentation. Since the segmentation was 
manual, (Fig 2), the regions of interest inside each corn 
grain were captured for healthy as well as Fusarium 

Fig 1. Sample images of non-touching and touching 
corn grains (a) Healthy - non-touching - 
endosperm side (b) Healthy - non touching - germ 
side (c) Healthy – touching - endosperm side (d) 
Healthy – touching - germ side (e) Fusarium 
infected - non touching - endosperm side (f) 
Fusarium infected - non touching - germ side (g) 
Fusarium infected – touching - endosperm side 
(h) Fusarium infected - touching - germ side. 

Fig 2. Segmented images from the gold standard method 
(a) Healthy - non touching (b) Healthy - touching 
(c) Fusarium infected - non touching (d) Fusarium 
infected - touching. 

a b 

c d 
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infected corn grains. However, this method could not 
capture the grain edges and corners accurately. In some 
grains, edges of the grains were considered as the 
background and in some other grains, background pixels 
were included in the ROI. This variability would have huge 
impacts in the classification model as edges of the grain is 
one of the most essential regions for extracting strong 
features. While this method had the advantage of extracting 
accurate information inside the corn grains including 
regions with colour variation in the endosperm and germ, it 
also had the disadvantage of time consumption and inter and 
intra-variations from person to person (Starmans et al. 
2020).  
Clustering segmentation The edges of the kernels were 
clearly segmented from the background (Fig. 3) because 
this method treats each corn kernel as a cluster and all pixels 
associated with that kernel were grouped into that cluster. 
Also, the variance within each cluster were minimum 
resulting in clear segmentation. However, some of the 
pixels from the ROI, especially from the bottom of the germ 
portion of the grains, which were dark coloured were treated 
as the background and was grouped as a background cluster. 
Although, the advantage of this technique is that it is very 
simple, highly efficient and could be utilized for large 
datasets, the disadvantage is that, since it is distance based, 
this algorithm follows no specific selection criteria and 
become difficult to estimate. Also, this method is only 
applicable to datasets which are convex (Pouladzadeh et al. 
2014).  

Fig 3. Segmented images from clustering method (a) 
Healthy - non touching (b) Healthy - touching (c) 
Fusarium infected - non touching (d) Fusarium 
infected – touching. 

Fig. 4. Segmented images from the flood fill method (a) 
Healthy - non touching (b) Healthy - touching (c) 
Fusarium infected - non touching (d) Fusarium 
infected - touching. 

Fig 5. Segmented images from the graph cut method (a) 
Healthy - non touching (b) Healthy - touching (c) 
Fusarium infected - non touching (d) Fusarium 
infected – touching. 

a b 

c d 

a b 

c d 

a b 

c d 



Volume	64	 2022	 CANADIAN	BIOSYSTEMS	ENGINEERING	 7.15	

  

Flood Fill based object segmentation Flood fill or seed fill 
algorithm determines the ROI based on its connections with 
the given node. For healthy grains, the segmentation was 
accurate with very minimal variations in the darker regions 
on the grain surface, whereas for the infected corn grains, a 
lot of variations could be seen (Fig. 4). This was mainly due 
to the huge difference between the start node and the target 
node (Lee and Kang 2010). Since the infected kernels had a 
darker endosperm and germ regions, when the algorithm 
moves to these regions, it considers them as background 
pixels and does not change them to the replacement colour 
and instead it moves over to the next connected node. This 
could be observed in both the non-touching and touching 
corn grains. This resulted in loss of features from the grain 
surface.  
Graph cut segmentation The graph cut algorithm 
segmented both the individual and touching corn kernels 
accurately. It clearly distinguished the background pixels in 
healthy kernels but showed some variations in detecting the 
edges of the infected kernels (Fig. 5), especially where the 
pixels coincide with the background thereby assigning 
higher weights to the background nodes. This was achieved 
because, it optimized the energy function over the 
segmentation. The background and foreground pixels were 
modelled using Gaussian distribution and used the 
intensities as seed pixels to get both the histograms. 
Although, some overlap was observed in the touching 

Fig 6. Segmented images from the colour thresholding 
method (a) Healthy - non touching (b) Healthy - 
touching (c) Fusarium infected - non touching (d) 
Fusarium infected – touching. 

Fig 7. Segmented images from the watershed method (a) 
Healthy - non touching (b) Healthy - touching (c) 
Fusarium infected - non touching (d) Fusarium 
infected – touching. 

Fig 8. Segmented images from Otsu’s thresholding 
method (a) Healthy - non touching (b) Healthy 
- touching (c) Fusarium infected - non touching 
(d) Fusarium infected – touching. 

a b 

c d 

a b 

c d 

a b 

c d 
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kernels, this happened only where the background pixels 
were not clearly visible. Visually, graph cut appeared to be 
a suitable method for segmenting corn kernels. 
Colour thresholding   This technique segmented the 
healthy kernels clearly as there was a distinct colour 
variation between the grains and the background. The red 
channel (R) had a greater influence than the green and blue 
channel. Both the edges and the whole ROI of each grain 
were clearly segmented in the healthy grains by this 
technique (Fig 6). However, for the Fusarium infected 
grains, the edges were not clearly segmented because of the 
overlap in the RGB channels of foreground with that of the 
background. Widening the channels resulted in inclusion of 
background pixels whereas narrowing the channels resulted 
in exclusion of foreground pixels. Therefore, the optimal 
threshold was fixed for RGB channels with lesser 
background pixels and each of the images was segmented.  

Watershed segmentation The watershed algorithm 
segmented the touching kernels in both healthy and infected 
datasets distinctly than the non-touching kernels (Fig.7). 
The background was not clearly marked in both the cases, 
but the foreground objects were more distinguishable in the 
touching kernels. This was because the algorithm identified 
the catchment basins and ridge lines in the image and 
treated it as a surface where light pixels were considered 
high and dark pixels were considered low. The major 
drawback of this method was the over-segmentation caused 
by excessive extreme values from the disturbances and 
noises in the image. This could be observed in the non-
touching kernels where the disturbances in the background 
were interfering with the foreground objects. 
Otsu’s thresholding The Otsu’s thresholding method 
detected the edges of the kernels, but failed to accurately 
identify the entire kernel surface, especially in case of 
infected kernels. Since there were dark patches on the 
infected kernels, the algorithm assigned those pixels to the 
background class. From Fig 8, it could be observed that 
some of the surface portions of the infected kernels had 
black patches which meant that they were considered as 
background and not segmented. In case of healthy kernels, 
the grain surface, edges and even the corn ear portion (the 
small part that will be attached to the whole corn ear) were 
segmented clearly. 
Segmentation accuracy 
 The Jaccard and Dice coefficient evaluation metrics were 
calculated for all the images in the dataset for each of the 
segmentation methods. The average metric coefficient for 
each segmentation method is calculated and shown in Table 
2 and 3.  
Jaccard similarity index The segmentation methods had a 
significant effect (p<0.05) on the segmentation accuracy 
determined by Jaccard similarity index. Flood fill and graph 
cut methods showed the highest average segmentation 
accuracy of 77% and watershed segmentation showed the 
least segmentation accuracy of 59%. In the healthy grains, 
the segmentation accuracy was high for the touching 
kernels (78%) than the non-touching kernels (71%). In the 
Fusarium infected grains, the segmentation accuracy was 
70% for both touching and non-touching kernels. Also, 
when comparing the effect of germ and endosperm portion 
of the grains, the segmentation accuracy was higher for the 
grains with germ side above (73%) than the grains with the 
endosperm side (71%). 
Dice coefficient The segmentation methods had significant 
effect (p<0.05) on the accuracy of segmentation determined 
by Dice evaluation metrics. Flood fill and graph cut 
methods showed the highest average segmentation accuracy 
of 87% and watershed segmentation showed the least 
accuracy of 72%. In the healthy grains, segmentation 
accuracy was high for touching kernels (87.5%), whereas in 
the Fusarium infected grains, the segmentation accuracy 
was 81% for both touching and non-touching kernels. Even 
though watershed and Otsu’s method had greater accuracy 

Fig 9. Sample images of healthy touching kernels 
(predicted mask overlapped on the gold 
standard) after evaluation of segmentation 
methods (a) Clustering (b)Flood fill (c) Graph 
cut (d) Colour thresholding (e) Watershed (f) 
Otsu’s thresholding method. 

a b 

c d 

e f 

Fig	 9.	 Sample	 images	 of	 healthy	 touching	 kernels	
(predicted	 mask	 overlapped	 on	 the	 gold	
standard)	after	evaluation	of	segmentation	
methods	 (a)	 Clustering	 (b)Flood	 fill	 (c)	
Graph	 cut	 (d)	 Colour	 thresholding	 (e)	
Watershed	(f)	Otsu’s	thresholding	method.	

a b 

c d 

e f 
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for touching kernels, they did not perform well for non-
touching kernels resulting in a lower average segmentation 
accuracy. This could be observed in the segmentation 
masks overlapped on the gold standard mask given in Fig 9. 
In the first four segmentation methods, variations could 
only be seen in the spaces between the touching kernels, 
whereas in watershed and Otsu method, it considered some 
of the background pixels as the foreground ROI which 
further decreased the segmentation accuracy.  
Classification models 
Support vector machine model In each segmentation 
method nine colour features and thirteen geometric features 
were extracted from the segmented regions of each image 
and an SVM based multiclass classifier model was 
developed (training:validation - 60%:40%) with two classes  
- Healthy and Fusarium infected. The overall accuracy of 
each segmentation method is shown in Table 4. All 
segmentation methods except Otsu’s and colour 
thresholding showed an accuracy greater than 70%. Graph 
cut method showed the highest accuracy of 84% followed 
by gold standard method with 82%.   Although false 

 

negatives could be seen, there were very minimal false 
positives. This indicated that the number of Fusarium 
infected corn grains wrongly classified as healthy were 
minimal.  
Pretrained CNN model:  Based on the classification 
output, a confusion matrix was plotted, and the overall 
classification accuracy was calculated for each 
segmentation method as observed in Table 4. The 
segmentation methods showed an increase in the accuracy 
of the pretrained CNN model. Flood fill showed the highest 
accuracy of 93% followed by graph cut and colour 
thresholding with 88% and 87%, respectively. Overall, it 
could be seen that flood fill, graph cut, and colour 
thresholding are the top three segmentation methods that are 
more suitable for pretrained neural networks to efficiently 
classify both healthy and Fusarium infected corn grains. 
The results further support the findings of Pouladzadeh 
(2014) where the implementation of graph-cut 
segmentation algorithm for food classification and 
recognition and showed a 15% increase in food 
classification accuracy.  
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Fig 10. Effect of segmentation accuracy on classification accuracy (a) Jaccard similarity index vs SVM (b) Dice 
coefficient vs SVM (c) Jaccard similarity index vs Pretrained CNN (d) Dice coefficient vs Pretrained CNN. 
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Effect of segmentation accuracy on classification 
accuracy 
The correlation between the segmentation accuracy 
(Jaccard similarity index and Dice coefficient metrics) and 
classification accuracy (SVM and pretrained CNN) is 
shown in Fig. 10. Overall, it could be observed that the 
segmentation accuracy has a positive correlation with 
classification accuracy. A strong positive correlation was 
observed between segmentation accuracy and pretrained 
CNN classification accuracy with coefficient of 
determination (R2) values of 0.9693 and 0.9727 for Jaccard 
and Dice evaluation metrics, respectively. However, the 
correlation was moderately positive between segmentation 
accuracy and SVM classification accuracy with the R2 

values ranging from 0.505 for Jaccard and 0.5151 for Dice 
evaluation metrics. The results showed that proper 
segmentation with higher segmentation accuracy is leading 
to improved classification, further supporting the literarure 
(Gao et al. 2007).  
CONCLUSIONS 
Graph cut showed the highest classification accuracy (84%) 
for the developed SVM based machine learning 
classification model in discriminating the healthy and 
Fusarium infected corn grains. Most of the segmentation 
methods clearly identified and segmented the healthy 
kernels but did not deliver the same performance for 
Fusarium infected kernels. This was mainly due to the large 
colour variations in the infected grains, most of which were 
wrongly segmented as the background pixels. Also, the 
segmentation methods showed higher segmentation 
accuracies for the touching grains rather than the non-
touching grains. In case of  pretrained CNN model, flood 
fill method  showed the highest classification accuracy of 
93% followed by graph cut (88%) and  colour thresholding 
(87%). Watershed and Otsu’s thresholding method showed 
higher classification accuracies for touching kernels but 
failed to segment the non-touching kernels accurately. A 
high correlation was also observed between segmentation 
accuracy and classification accuracy, especially with the 
pretrained CNN model with R2 values of 0.9693(Jaccard 
similarity index) and 0.9727 (Dice coefficient). For further 
research, individual grain testing could be performed so that 
the model can efficiently identify infected grains when 

healthy and infected grains are mixed together. The 
appropriate segmentation methods could be  optimized and 
incorporated in developing a machinery that could be 
installed in the farms and corn processing industries that 
accurately discriminates the healthy and infected kernels. 
The results strongly suggests that for future research on 
image-based applications, investigation on various 
segmentation techniques would provide us with the suitable 
method that would contribute to the most efficient 
classification model development with optimized accuracy. 
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