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Uziak, J. and Chieng, S. 1988. A new approach to solving a tran
sient-state drainage equation. Can. Agric. Eng. 30: 319-321. A
newsolutionto the transient-statedrainage equation for drainagecom
putations was presented. This paper reports the development of this
solution by using Galerkin's Method and a comparison of it with the
well-known Glover's and Tapp and Moody's solutions. It was con
cludedthat the proposedequation gives better results than Glover's or
Tapp and Moody's equations for normalized time less than 0.01.

TRANSffiNT-STATE DRAINAGE EQUATION
Within the past 30 yr, a considerable amount of research on
drainage problems has been done. So far, drainage problems
havebeen divided into steady-state and transient-state flow con
ditions. A steady state exists when the boundaries and flow rates
of a system do not change with time. Otherwise, a transient
state exists. As steady state seldom exists under the actual field
conditions, solutions by using the transient state condition
should be adopted. In transient flow, the position of the water
table between two parallel drains (see Fig. 1) can be given by
the following differential equation (Dumm 1960, 1964):
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The boundary conditions for equation (1) are:

y (0,/) = y (S,t) = 0 (2)

An initial condition (or initial water table profile) of a fourth-
degree parabola was suggested by Tapp and Moody (Dumm
1960,1964) and has been evaluated by the United States Bureau
of Reclamation (Luthin 1978) as follows:

dt ex2
(i)

= water table height above the datum;
= time (d);
= K.D/fi
= soil hydraulic conductivity (m/d);
= rf+V2;
= average depth of flow region (m);
= depth to impermeable layer below drain (m);
= water table height above drains at mid-spacing as

shown in Fig. 1 at time t = 0, (m);
= (trainable porosity, percentage by volume;
= outward horizontal distance from drain (m);
= drain spacing (m);

y(x,0) =
8y0

(S*X-3S2X2 + 4SX>-2X4) (3)

Althoughthis parabola only approximates the initial water table
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Figure 1. Geometry of drainage problem.
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shape, the U.S. Bureau of Reclamation has used it in modifying
the well-known Glover's equation as a solution to Eq. 1 under
Eq. 2 boundary condition (Van Schilfgaarde 1974) and accord
ing to Dumm (I960, 1964) can take the following form:

y(x,t) =

/ rt2ir2-8

192y0

n= 1,3,5,...

\ / n2Tr2at\ . /mrX\n5 Jo^--^-;*^—J (4)

Substituting X=5/2 into Eq. 4, the following (Glover's) work
ing equation is obtained for the height of the water table at mid-
spacing:
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n= 1,3,5,.

(-•) + i^Ui-^) (5)

Tapp and Moody, as reported by Dumm (1960), suggested
that an approximate solution can be obtained by taking only the
first term of the series in Eq. 5:

»(f')--=?- «*-«>-»(• ir2af

S2
(6)

ALTERNATIVE SOLUTION PROPOSED

The Galerkin's method was applied to solve the differential
Eq. 1 with boundary and initial conditions given in Eqs. 2 and
3, respectively.
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Galerkin's method approximates the solution of a differential
equation

L (n) = 0 (7)

with the series

M-= ? a&i (8)

The functions 6i must be linearly independent and differen-
tiable to the extent that all terms in the differential equation and
boundary conditions can be obtained. For a one-dimensional
system, the set of functions could be either:

60 = 1 and 6i = sin (i irX) i = 1,2,3,... (9)

(Carson et al. 1979) or:

60 = 1 and 9i = X i = 1,2,3,... (10)

(Mikhlin and Smolitskiy 1967). When the approximate-solution
is substituted into the differential Eq. 7, the equation becomes:

IW = € (11)

where e is the error in the approximation. The parameters ax in
Eq. 8 can be determined by using orthogonal conditions for the
error of approximation(e) and trial functions (0j,j = 1,2,3,...)
as suggested by Mikhlin and Smolitskiy (1967):

/n€e//ft = 0 ;=1,2,3,... (12)

If the trial function satisfies the boundary conditions but not
the differential equation, ft is the region interior to the bound
ary. It defines the boundary if it satisfies the differential equa
tion but not the boundary conditions.

In using the Galerkin's method, a trial function satisfying the
two conditions (Eq. 2 and 3) is chosen as:

8y0y(X,t) = —£- (53X - 3S2*2 + 4SX* - 2X4)

irnX \+ i ansin(
n=l i3

and the error term can be obtained as:

da„ ( irnX
€= 2

( da.
V dt

sin (-=•))-S

i

48ay0

(-4X2 + 4SX-S2) +
tt2cl

S2

2 . ( ™X\n2aa sin ^ — )

(13)

(14)

The parameters an(n = 1,2,3,...) in the above equation can be
obtained from the orthogonal conditions (i.e. Eq. 12) which
constitute a set of the following equations:

ir2a

s TT/W

J e sin —- XdX = 0
o 5

where m = 1,2,3,... (15)

This gives Eq. 12 the form of:

0 n=ll

48ay0

sin

dt S

(-4X2 + 4SX -S2) +

irnX

>-

TMlX
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S2 x S /A S

where m = 1,2,3,... (16)

The result of the integration of Eq. 16 is the set of linear dif
ferential equations:

dX = 0
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dam irwra

dt S2

where m = 1,3,5,... (17)

These equations are independent and could be solved separately
to give the following results:

m2TT2at

*U-

192y0a

•Firm (^-«)- 0

^l92yo(±^L)[ l-exp (
v m5TT5 'L x

where m = 1,3,5,...

S2

y(X,t) = (53X - 3S2X2 + 4SX3 - 2X>) -

192y0
2

n= 1,3,5,.

[l-exp (-

w2ir2-8

ri3

n2TT2at

S2 )] sm
nirX

a
(18)

Substituting Eq. 18 into Eq. 13, gives the solution for Eq. 1
as follows:

8*

(19)

DISCUSSION OF THE SOLUTIONS

As mentioned before, the solution of the transient-state differ
ential equation is often expressed in the form of Eq. 4 as
reported by Dumm (1960, 1964). It should be noted that Eq. 4
does not satisfy the initial condition (i.e., Eq. 3), while Eq. 19
proposed in this paper does satisfy the initial condition "pre
cisely." Equation 4 could obtain the precision of Eq. 19 by
expanding the initial condition into the Fourier series as follows:

y(x,0) =

192y0

8y0
S4

(S3X - 3S2X2 + 45X3 - 2X4) «

2
n= 1,3,5..

7r2n2-8 mrX
sin —-— (20)

When Eq. 20 is substituted into Eq. 19, the following solution
is obtained:

y(X,t). J2^ i
TT n= 1,3,5,...

/ ir2n2-8 \ / n2TT2at \
K—j—)«*{-—$—) - ssin

nirX
(21)

We can see that Eq. 21 is exactly the same as Eq. 4. This
indicates that solution in the form of Eqs. 4 and 21 could be
treated as the approximation of Eq. 19 proposed in this paper.
For the height of the water table at mid-spacing (X=5/2),
Eq. 19 becomes:

y(-y') =*-

(
n2ir2-8

>[
since

192y„

IT5

l-exp (

2 (-1)
n= 1,3,5,...

n2TT2at
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k5 .-MA... x rf '

Therefore, Eq. 22 can be simplified to:

192y„

/ n2ir2-8 \ /

V—S— ie"PV-
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n= 1,3,5....

n2Tr2at \
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(22)

(23)
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Table I. Relationship between y/y0 and at/S2 at mid-spacing by
;different equations

as/S*t Eq. 5t Eq. 22§ Eq. 6H Eq. 24||

yty)

0.0001 1.0000 1.0000 1.1718 0.9988

0.0002 1.0000 1.0000 1.1707 0.9977

0.0003 1.0000 1.0000 1.1635 0.9965

0.0004 1.0000 1.0000 1.1684 0.9954

0.0005 0.9999 0.9999 1.1672 0.9942

0.0006 0.9999 0.9999 1.1661 0.9931

0.0007 0.9999 0.9999 1.1643 0.9919

0.0008 0.9999 0.9999 1.1638 0.9908

0.0009 0.9998 0.9998 1.1626 0.9836

0.0010 0.9998 0.9998 1.1615 0.9885

0.002 0.9992 0.9992 1.1501 0.9771

0.003 0.9983 0.9983 1.1388 0.9658

0.004 0.9969 0.9969 1.1276 0.9546

0.005 0.9952 0.9952 1.1165 0.9435

0.006 0.9931 0.9931 1.1056 0.9326

0.007 0.9906 0.9906 1.0347 0.9217

0.008 0.9877 0.9877 1.0840 0.9109

0.009 0.9845 0.9845 1.0733 0.9003

0.010 0.9808 0.9808 1.0628 0.8898

0.02 0.9279 0.9279 0.9629 0.7899

0.03 0.8579 0.8579 0.8724 0.6994

0.04 0.7844 0.7844 0.7904 0.6174

0.05 0.7137 0.7137 0.7161 0.5431

0.06 0.6478 0.6478 0.6488 0.4758

0.07 0.5874 0.5874 0.5878 0.4148

0.08 0.5324 0.5324 0.5326 0.3596

0.09 0.4825 0.4825 0.4825 0.3095

0.10 0.4372 0.4372 0.4372 0.2642

0.2 0.1629 0.1630 0.1629 -0.0101

0.3 0.0607 0.0607 0.0607 -0.1123

0.4 0.0226 0.0226 0.0226 -0.1504

0.5 0.0084 0.0084 0.0084 -0.1646

0.6 0.0031 0.0032 0.0031 -0.1633

0.7 0.0012 0.0012 0.0012 -0.1718

0.8 0.0004 0.0004 0.0004 -0.1726

0.9 0.0002 0.0002 0.0002 -0.1728

1.0 0.0001 0.0001 0.0001 -0.1729

tNormalized time.
tGlover's solutionby using Fourier Series reported by Dumm (1960,
1964).
§Glover's solution by usingGalerkin's Methodproposedin thispaper.
?Tappand Moody's equation.
lApproximation of the solution of Galerkin's Method by taking first
term only.

It can be seen that Eq. 23 is exactly the same as Eq. 5 (Glov
er's) mentioned above. If only the first term of the approxi
mation in Eq. 22 is taken, the equation becomes:

y{\^ ) -*- 192y0
(it2-8)

[.-«p(-^)iS2
(24)

Equation 24 is an alternate solution to Eq. 6 or Tapp and
Moody's approximation. This shows that Galerkin's method
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can be used to obtain another solution for the transient-flow
drain-spacing equation.

In subsurface drainage design, spacings are calculated by
choosing a water table height above the drains at mid-spacing.
In order to compare the proposed drain-spacing equation (i.e.,
Eq. 24) to Glover's and Tapp and Moody's equations, ratios of
y(S/2,t)/y0 were calculated for different normalized time, at/S2
(Dumm 1964), as given in Table I. It can be seen from Table I
that while both the proposed equation (Eq. 24) and the Tapp
and Moody's equation give the approximate solution to the exact
solution, die proposed equation gives better results when at/S2
value is smaller than 0.01 and the Tapp and Moody's equation
gives the better approximation when at/S2 is greater than 0.01.
This means that the proposed equation should be used to obtain
the solution when die normalized time is small as the initial

condition is an important factor to be considered in the
approximation.

CONCLUSION

The transient-flow differential equation was solved by using
Galerkin's method. This solution satisfied the initial condition

"precisely" and it had the same precision as the solution with
the Fourier series expansion of the initial condition. Owing to
this precision, the proposed equation gave a better solution to
the differential equation than the solution (i.e., Eq. 4) reported
by Dumm (1960, 1964).

It should be noted that none of the equations (Eq. 24) pro
posed in this paper and Tapp and Moody's equation) gave the
"exact" solution to differential Eq. 1. As the proposed solu
tion satisfied the initial conditions, it gave better results than
Tapp and Moody's equation when the normalized time (at/S2)
was smaller than 0.01 as shown in Table 1. It is recommended

that the proposed equations (Eq. 24) and Tapp and Moody's
equation should be used to calculate the drain spacing for tran
sient flow drainage at different normalized time steps. The for
mer should be used when at/S2 is smaller than 0.01 and the

latter will give better approximation when at/S2 is greater than
0.01.
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