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Bemnier, T. and Landry, J.-A. 2000. Algorithmic recognition of
biological objects. Can. Agric. Eng. 42:101-109. An algorithmic
method of object recognition to identify and count fungal spores in
microscopic digital images is presented. The development of this
process is a key element and cornerstone of a large-scale research
program ultimately aimed at reducing fungicide application. The
program, as a whole, is an attempt to build a machine based system in
order to improve the ability of researchers to assess the population of
pathogenic fungi within agricultural crops and thus more accurately
target fungal pests. A three pass method was used: a preliminary pass
in order to narrow the search space down to only the areas that contain
spore-like darkening; a second pass that highlights both the center and
the surrounding edge of the spore and produces a secondary image;
and a third pass in which a template is matched to the secondary
image. After the final pass, the list of positions and orientations of
spores is reviewed and the conflicting and less likely positions are
eliminated. The goal of the method is to accurately count the spores in
the minimum amount of time. The resulting time is between O and 21 s
of analysis on a 160 Mhz Pentium computer for a 64 by 64 pixel
image. The algorithm, as implemented, demonstrated an accuracy of
*5.3% on low quality images, which is less than the assumed error of
humans performing the same task and is tolerant of partial occlusion.
The system is loosely based on biological vision, is extremely
versatile, and could be adapted for the recognition of virtually any
object in a digitized image.

Le développement d’une nouvelle méthode algorithmique pour la
reconnaissance de spores de champignons a partir d’images
microscopiques est présenté. Le processus est une des composantes
clés d’un programme de recherche global visant a identifier les spores
de champignons accumulés sur des supports mécaniques. Cette
information sera ensuite utilisée pour le développementet ’application
de modeles de simulation épidémiologiques. La méthode présentée
consiste en un procédé en trois étapes qui reconnait avec succes les
spores retrouvés dans n’importe qu’elle orientation, et est tolérant a
I’occlusion partielle. L’algorithme, tel que développé, 4 démontré une
précision de + 5.3% lorsqu’utilisé avec des images de qualités
médiocres, une performance bien supérieure a celle d’un humain dans
des conditions similaires. La vitesse d’exécution s’est aussi avérée
supérieure 2 celle d’un humain. La méthode développée présente un
cadre descriptif qui, 2 travers les deux premiéres étapes, met en valeur
certains criteres distinctifs de I'image observée. Ces criteres sont
ensuite utilisés dans la troisi®me étape pour la reconnaissance finale
des spores. La méthode est une adaptation libre du processus de vision
biologique, est extrémement versatile, et peut étre adaptée pour la
reconnaissance de presque tout objet présent dans une image
digitalisée.

INTRODUCTION

This paper reports on a machine vision project that is the
cornerstone of a large-scale research program ultimately aimed
at reducing fungicide application. The program, as a whole, is
an attempt to build a machine-based system to improve the
assessment of pathogenic crop fungi populations and more
accurately target fungal pests.
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Pathogenic fungal spore density is considered to be a strong
indicator of crop fungal infection (Vincelli and Lorbeer 1988).
The determination of availability, dispersal rates, and dispersal
patterns of spores is an important step toward the monitoring of
plant diseases (Rotem 1988). Currently, the trapping and
counting of airborne crop fungal spores is being used as an
indicator of the presence and progression of disease. A problem
with this approach, however, is that it can be very difficult to
accurately assess pathogenic levels due both to variability in
counts (Vincelli and Lorbeer 1988) and the difficulty to assess
them while still allowing time for control measures to be taken.

The task of counting spores is time consuming and tedious.
Due to the level of strain involved in this work, the workers can
only perform for short periods with frequent cessations in order
to rest their eyes and otherwise recuperate labour (Paul et al.
1993). Even at peak efficiency, manual counting of the fungal
spore cells is performed too slowly. The data from one day of
collection from a single sample location requires at least a full
week to analyze. Thus, by the time the data is processed, the
information is no longer relevant. In addition, it is generally
recognized that accuracy in identification and counting
decreases significantly after 3 to 4 h of labour (Paul et al.
1993). Automatically performing this task would reduce the
amount of painstaking labour and also allow for the full
analysis of the field samples within a useful time frame
(optimally, in real-time). Thus, the goal of the overall research
program is to develop a machine vision system that can count
fungal spores in order to provide epidemiologists with an
assessment of dispersal rates, distribution, and degree of
colonization of fungus.

PROJECT OBJECTIVE and CONSTRAINTS
The objective of the project is to design an algorithmic process
to identify and count spores in digital images.
The constraints are that this process:
1. be performed as fast or faster than by a human being,
2. have a precision of at least 80%,
3. be tolerant of partially occluded spores.

DEVELOPMENT OF THE METHOD and
LITERATURE REVIEW

The problem involved developing a method to recognize
irregular objects which may appear in any physical orientation
and which may be obscured or occluded by other objects. The
application of machine vision to agriculture is rapidly
increasing and although there is a large amount of published
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literature on the topic, there is none devoted specifically to the
detection of fungal spores.

Machine vision in agriculture has traditionally been used in
the grading of produce. One of the advantages of a mechanized
process is that a machine can be absolutely consistent over long
periods of time as opposed to the general inconsistency of and
the effects of fatigue on human judgment criteria (Churchill et
al. 1992).

Although grading applications of machine vision have met
with reasonable success, many have two limitations in
common: the position and orientation of the subject are
controlled; and the subject is fully distinguished from both the
background and other objects. Unfortunately, in the detection
of spores, there can be no assumptions made about their
position or orientation and occlusion is common.

Amongst the most common algorithmic approaches to the
analysis of real images are variations of the Hough transform
(Hough 1962), which has long been considered a robust and
versatile technique for detecting analytically defined curves in
natural objects. There have been many processes developed to
detect and define circular or elliptical curves within images that
are variations on the Hough transform (Raymond et al. 1992;
Yuen et al. 1989). However, in these citations, a high degree of
regularity in shape was assumed, thus an adaptation of this
application to spore recognition is questionable.

A variety of attempts were made at image recognition using
conventional methods and all met with similar failures. The
failures seemed to be inherent to the processes themselves in
that algorithmic detection processes are in fact, processes of
detection. Thus, an attribute or parameter of a given object is
sought within an image and any object that includes that given
attribute is then considered to be the quarry. The frustration
with the limitations of these methods in terms of natural objects
in natural images led to the question: “Why is it so easy for
humans to recognize objects and so very difficult for
machines?” The processes of biological vision were then
studied and its incredible generality inspired a much broader
approach to the initial problem.

Vision in animals is extremely complex and not fully
understood. We have a reasonable understanding of the
processes involved in vision and the portions of our physiology
and neurology that perform these functions. However, on the
whole our understanding has many unanswered questions. It is
in no way the intention here to explain biological vision but a
brief introduction is necessary since a large portion of the
recognition algorithm was loosely based on retinal functions.

Light entering the eyeball is focused by the cornea, pupil,
and lens on the retina. The retina is a complex network of
neurons that includes a mosaic of about 126.5 million
photoreceptors. Each photoreceptor chemically transforms
incident light into an electrical output signal. The response
signal then passes through a network of cells and leaves the
eyeball via the optic nerve, which is comprised of
approximately one million ganglion cells. Early descriptions of
the retina and its workings were made by Adrian and Matthews
(1928). When more accurate means of measuring neural
responses were available, the question of how several-hundred
million receptor signals were mapped into only one million
ganglion responses was addressed (Hartline 1940).
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Experimentation demonstrated that there was a distinct
spatiality in the grouping of the photoreceptor signals in the
ganglion responses (Lettvin et al. 1959). It was also found that
a single spot of light on the retina would elicit an action
potential (response) from a particular ganglion cell. When that
light was moved across the retina in a roughly circular pattern,
the response of that ganglion cell remained the same (Kuffler
1953). In addition, if light fell on the area encompassed by the
aforementioned circle, the response of the ganglion cell would
cease even if light was still falling on the area that had
previously excited a response.

From this information it was postulated that the signal of
ganglion cells is actually an integration of the signals of many
photoreceptors, which comprise a receptive field. There have
since been many experiments looking into the grouping of
receptive fields and it has been found that there are several
varieties that respond to very specific stimuli and the concentric
rings of mutually antagonistic responses is only a single
example among many (Hammond 1973). In addition, this
integration of signals is not restricted to the retina, in fact, the
process happens throughout the visual pathway (Hubel and
Weisel 1977).

It was decided to algorithmically emulate the retinal process
of biological vision in order to create a far more generalized
approach to recognition. The concept of the receptive field was
the building block of the process and the overall approach was
loosely based on the three cognitive processes humans undergo
when searching for an object within an image: a swift scan; a
closer look at the points of interest resulting from the
preliminary scan; and finally a knowledge based decision as to
whether or not the object in question is the sought object.

DESCRIPTION OF THE ALGORITHM

First pass: Initial glance

When searching for an object in an image, the tendency of most
humans is to glance quickly through the image with a very
coarse or crude aspect of the sought object as a search
parameter, meaning that anything even remotely resembling a
single or several given attributes of the sought object will
require a closer look. However, until something similar is
found, the search is relatively cosmetic, i.e. not every single
location is compared with all the known attributes of the quarry
but only the locations that contain a given aspect of the object.

The first pass of the algorithm behaves similarly. The
receptive field (shown diagrammatically in Fig. 1) is passed
over the image and at every sampled location, the average
intensity of the pixels within the center and average of those in
the surrounding ring are calculated, as depicted in the algorithm
in Fig. 2. In locations where the center is significantly darker (a
lower average intensity) it records the location, or in analogy to
the biological equivalent, it responds.

After much adjusting of the sensitivity, the operation does
tend to respond to some non-spore objects, however there are
no omissions amongst the tested samples. Due to the
irregularity in spores and the debris, it is essentially impossible
to quickly respond exclusively to spores with no omissions,
thus it was chosen to include some extraneous material rather
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Fig. 1. Preliminary detection operator.

than possibly exclude spores. The response sensitivity is a
matter of tuning with respect to the lighting conditions of the
image; thus trials are required for best results. Optimal
adjustment occurs when there is one response per spore.

With further experimentation and an effort at speed
optimization, it was realized that it was unnecessary to apply
the operator at every location within the image. It was found
that by applying the operator only at intervals roughly
equivalent to the smallest dimension of the spores, there were
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Fig. 3. Resulting responses of preliminary operator.

no extra omissions of spores and many of the extraneous
responses of the operator could be eliminated. The resulting
responses of the detection process are shown in Fig. 3. The X's
in the figure are shown only to illustrate the points at which the
operator responds and do not normally appear during execution.

Second pass: Local scrutiny

The second pass of the system is a considerably more object-
specific process. While not a determination of location, it is an
attempt to describe the image in terms of more object-specific
qualities. This approach could be
used on any two-dimensional

object, however the tuning
described here will be specific to
the spores.

The receptive field of the
second pass (Fig. 4) was designed
to take into account some
distinguishing features of the
shading patterns of spores and
only to search in the vicinities of
the findings of the first pass using
* | the algorithm described in Fig. 5.
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of the spores was found (Fig. 6).
The second pass lends regularity
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Fig. 2. Diagram of first pass algorithm.
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to highly irregular objects and is

used as a means of better
describing the image or
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Fig. 4. Receptive field operator of second pass.

enhancing very general spore-like aspects of the image without
being overly spore-specific.

Thus, the final result of the second pass is a strong response
of the receptive field on the edges of the spores and a fairly
dependable response on their centers. There is a very low
response in between the edges and the centers, lending to a
strong enhancement of the outline and center of the spores.

a

Fig. 6. Responses from selected tuning of second phase.

Third pass: Application of knowledge

While the first and second passes made an attempt at generality
through an emulation of biological vision, the generality ends
there. The third pass is very object specific. At this stage, what
is known about spores is applied to their description resulting
from the first two passes. The object-specific knowledge can be
broken into two domains. The first is what the object looks like
and the second is how the object
can be arranged or more
specifically, how it cannot be

FOR all (xy) FOR (ij) arranged. Its shape and its
| Within SCORE of m from (CEN (xy) - RADperif) shading properties define what
FINISHED Anexrxy | 10 (CEN (xy) + RAD perif IF (ij) is in image AND (ij) mue  anobject looks like. Thus at this
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Loop FALSE | specific template can be applied
to the image. Due to the radially
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Fig. 5. Diagram of second pass algorithm.
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a receptive field is therefore
reintroduced and an
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Fig. 7. Spore specific template.

asymmetric, shape and shading specific receptive field was
constructed (Fig. 7).

The receptive field calculates, at every location and every
orientation (Fig. 8) the matching of the peripheral bars to the
typical highlighting of the contours of spores; the edge to the

absence of a response: and the stronger aspects of the center

response. For each of these aspects of matching, a score is
calculated, using the algorithm shown in Fig. 9 and the
positions and orientations of each strong match, above a
selected threshold, are recorded.

The tendency of this matching process is to select more than
a single orientation at any given location (Fig. 10). However,
if the matching criteria were too strict, the poorer quality spores
or partially occluded spores would be omitted, thus the
selection of multiple orientations is left uninhibited.
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Fig. 8. Diagram of application of third pass.

This leaves the application of the second domain of
knowledge, physical orientation. It must be recalled that
although the process deals exclusively with a two-dimensional
image, the image does represent a three dimensional object.
Given that these particular objects are obloid and that they are
collected by allowing airborne spores to fall onto the collection
apparatus, the likelihood of having one spore lie directly on top

of another (i.e. coincident centers)

is very low.
Therefore, while occlusion
must be tolerated, coincident

centers must not be. With these
precepts, the list of all recorded
positions and orientations is re-
examined and each recorded item
is checked against its spatial
relationship with all the others.

s

For every item that conflicts with

Lg{ifm -Check matching another, the matching scores are
to second pass consulted and the strongest match

image array . . “ e
Hosalolale FisHis is h(?]?.CIed as the “correct” one. In
score addition, those matches that are
weak and do not have any other
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LooP FINISHED
item chep!;q all other LOOP
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orientations
IFtwo items conflict / TAVE
A
FALSE
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e t————

-Reassess best
matching
-Rotate Template

matches in the vicinity that would
possibly obscure them are
discounted as non-spores. The

L 1

other item AND has \

weak response

/ IFitem is not near

FALSE

Delete item

/ IF best match meets / »
minimum criteria TRUE

final selections after the second
domain of knowledge is applied

Record position
and orientation

are shown in Fig. 11.

e | MATERIALS and METHODS

The algorithm’s code was written

. ) ) ) in C++ and was developed using a

Fig. 9. Diagram of third pass algorithm. standard  16-bit development
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Fig. 10. Multiple matchings.

package. The language was chosen for its versatility and
portability and the development platform for its availability at
the time. Unfortunately, the choice of platforms led to some
limitations. Due to the inherent 640 Kbyte scope of DOS and
the 16-bit limit (64K index limit), the size of arrays used in the
code had to remain relatively small. Since the images are most
easily handled as arrays, the limitations were overcome by
handling small portions (64 % 64 pixel) of the image at a time.
In terms of development of the method, this has no effect. For
an actual implementation or prototypical system, the code
would require a 32-bit development process and a flat-memory
platform such as Windows 95™ or OS/2™™,

Fig. 11. Example of final result.
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Fig. 12. Original image.

Due to the scope of this project, the image recognition
system was developed before any actual working field samples
were available. Thus a 400x400-pixel example image was
provided in order to test the algorithm. The test image (Fig. 12),
although displaying spores (the rice-like granules), differs

10(c)

10(d)

Fig. 13. Some selected 64x64 pixel test images.
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significantly from an actual field sample. This image comes
from a photograph taken through a microscope of a glass
mounted spore sample, which was then digitally scanned. The
sample, unfortunately, was fairly old when the photo was taken
and as a result, there are cracks in the guar gum (long black
lines). The concentration of spores is also considerably higher
than would be in field samples and some of the spores in the
image had germinated, which tends to obscure their shape.
Furthermore, the lighting conditions across the image vary
significantly. It was decided, however, that using this low
quality image to test the method would lend to its tolerance of
debris and occlusion and would yield a more robust algorithm.

The image selections shown in Fig. 13 were made on the
basis that they represent a reasonable variety of conditions in
terms of lighting and occlusion. While they are of relatively
poor quality, the selections are not overly obscured by cracks
or germinated spores and include concentrations of spores that
could occur in field samples with the exception of Figure 13(d).
This concentration of spores in Figure 13(d) is probably too
high for such a small area but was included to thoroughly test
the robustness of the process.

RESULTS and DISCUSSION

The developed process was applied to many test images and the
results from the processing of the images in Fig. 13 are shown
for each pass of the algorithm in Fig. 14.

There are two possible types of misidentification, false-
positive (identification of a non-spore as a spore) and omission
(not identifying a spore). In the above tests, there were no
omissions, with the exception of the spores on the borders of
the images in Figs. 13(c) and 13(d). The border spore omissions
are trivial and could easily be avoided with field samples since
there would be considerably less border per image (bigger
images) and there could be a slight positional overlap as the
image frame is moved over the sample to eliminate borders
entirely. Counting a spore twice is also easily avoided since
position and orientation uniquely identify each spore.

The false positive in the upper left corner of Fig. 13(c) is
partially due to the border problem. When the receptive field
straddles the border, only the pixels within the image frame are
considered. While this generally leads to an omission, if the
points that are considered confirm a spore and there is an
inadequate contradiction, the false positive persists. Again, this
is a border problem and can easily be solved.

Another false positive (not shown) did occur and is
somewhat more significant. This is a misidentification due to
the fact that a spore had germinated. While germination is an
unlikely occurrence in field samples, this false-positive
demonstrates that debris can fulfill the requirements of the
operator. A solution to this problem would be to improve the
operator and make it even more specific. However, increasing
complexity in the operator would only further hinder the speed.

Overall the algorithm showed an accuracy of + 5.3% on low
quality images. In terms of speed, the estimated required time
to analyze a sample of higher than likely spore density is
approximately 68 consecutive days, while the required time for
a sample of lower concentration by a human is approximately
58 working days or 80 consecutive days.
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The three important differences with the images that will be
obtained from field samples are: the quality, in terms of lighting
and debris, will be improved; the resolution will be higher; and
the handled images will be larger. All three of these factors will
lend to a more accurate distinction of the spores. In addition,
the algorithm will run under a 32-bit platform increasing its
speed as well as its ability to handle very large arrays. Thus, the
accuracy and speed will be improved.

CONCLUSIONS

The objective of this project was to develop an algorithmic
process to identify fungal spores. Specifically, the process was
to be fast, accurate, and tolerant of occlusion. All these
requirements were met and although the test results were a little
slower than expected, implementation on actual field samples
will likely demonstrate adequate speed. The algorithm
demonstrated a potential accuracy of + 5.3% on very low
quality images whereas the assumed error of humans is 20%
even in ideal circumstances.

In terms of the machine vision project as a whole, even if
this algorithm is not used in its implementation, it provides a
great deal of insight into the problem. Since the algorithm is
based on the retinal processes of biological vision, it provides
a very modifiable means of describing any image, in terms of
any features and an extremely adaptable template for the
identification of any object in any orientation and the processes
developed here could easily be applied to an artificial neural
network based approach.

While the algorithm, as is, does not distinguish between
physically similar species, it could easily be adapted to do so
and currently provides important information in terms of
position and orientation. Thus it can be seen as a valuable first
step toward a system of species differentiation.

Future work on the project will include optimization of the
code to improve performance, developing it on a 32-bit, flat
memory platform, and extensive testing on field samples.
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