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Canadian Biosystems Engineering/Le génie des biosystèmes au Canada
43: 7.15-7.22. The relationships between data on horse hoof crack
damage and a number of other variables were modelled with artificial
neural networks (ANNs). The latter were then used to generate
estimates of hoof crack damage, the quality of these estimates
determined, and the variables that were most appropriate for modelling
selected. This was done with a view to the construction of computer-
based expert systems that will be able to give diagnostic, as well as
preventive and curative advice, for a variety of purposes. The highest-
ranking ANN that was obtained would be able to support a fuzzy, four-
level hoof damage differentiation scheme in an expert system. It is
anticipated that system performance could be improved to support a
ten-level scheme. Keywords: hoof cracking, artificial neural networks,
horse, modelling.

Les relations entre les données sur les fissures de sabot et certaines
autres variables ont été modélisées à l'aide de réseaux de neurones
artificiels (RNA). Ceux-ci ont été utilisés pour prédire la gravité des
fissures; on a ensuite évalué la qualité de ces prévisions et retenu les
variables les plus utiles à la modélisation. Ce travail avait pour but de
créer un système expert informatique polyvalent capable de poser des
diagnostics et de fournir des conseils en matière de prévention et de
traitement. Le RNA de plus haut niveau est compatible avec un
mécanisme à logique floue permettant de différencier quatre degrés de
gravité d'une fissure dans un système expert. Nous croyons pouvoir
améliorer le système qui sera pourvu d'un mécanisme à dix niveaux.
Mots clés: fissures de sabot, réseaux de neurones artificiels, cheval,
modélisation.

INTRODUCTION

Hoof cracking is a problem with many horses and appears to be
related to, and influenced by, a large number of factors such as
the environment in which the animal lives and works, genetic
and conformational predisposition, nutrition, and hoof care.
Thus, hoof cracking is a complex phenomenon that occurs for
many reasons in combination, and that impacts many aspects of
an animal's existence. In this project, the overall goal was to find
a practical and effective way to model and predict the
occurrence of hoof cracking on the basis of relatively small
groups of variables whose values are obtainable at low cost and
with relatively little effort. The purpose of this was multifold.
First, the availability of such a method would make it possible
to easily assess the possibility of an individual horse actively
suffering from hoof crack damage. Depending on the variables
chosen, this might then be done automatically (Kok and
Gauthier 1986; Gauthier and Kok 1989). Such an approach to
problem detection and preliminary diagnosis is necessary, for

example, for the development of automated management
systems. Second, the risk of any one horse developing crack
damage might be evaluated on the basis of such a model, and
this could be useful for preventive decision making about a
particular animal. Third, hoof crack risk might be assessed in
this way for a population of animals, possibly affecting
decisions about barn design and facility operation. Fourth, the
effectiveness of specific treatments for hoof crack damage might
be appraised and compared, and this could lead to the
generation of optimal treatment suggestions. Thus, this work
was carried out with a view toward the future creation of various
computer-based expert systems that will provide diagnostic, as
well as preventive and curative advice. Of essence here was to
determine whether artificial neural networks (ANNs) might be
suitable for the type of modelling required in this case, i.e.,
based on very wide, relatively short data sets of intricately
correlated variables, typical of biosystem observation. In this
project only the first purpose mentioned above was specifically
addressed. The immediate project objectives were therefore: a)
to examine which variables would be suitable for use in
moderately-sized ANN models and, b) to determine how well
the ANN models reflected the complex relationships between
hoof cracking damage and various other factors.

The project was carried out in two major phases: data
collection and modelling. These chronologically overlapped to
some degree, so that the early part of the modelling was done
with a somewhat smaller data set than the later part. In total,
data were collected on 110 horses, for a very wide variety of
variables related to hoof cracks, horse care, environmental
conditions, animal genetics, etc. Data collection involved the
interviewing of horse owners, farriers, and stable managers, as
well as the taking of measurements on the animals, on their
physical environments, and on their feed. Most of the data were
collected during the hoof care visits of cooperating farriers. The
data were stored in a combination spreadsheet/relational
database, in which the values of a number of derived variables
were also calculated. Some of the latter were simple, linear
combinations of other variables, such as the difference between
pre- and post-trimming toe length, whereas others corresponded
in more complicated ways to measured quantities, like hoof
score and horse score. The relationships between variables were
then modelled by training ANNs of various architectures. To do
this, the ANNs were first trained with a number of different
subsets of the data, corresponding to different groups of
variables, and then tested for their efficacy in reproducing the
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relationships between cause and effect variables (inputs and
outputs). The modelling was done in two stages. In the first
stage a large number of variables was tested as inputs, and the
most influential and useful ones were selected. In the second
stage, subsets of these prime variables were then tested, so as to
arrive at relatively small networks in which a substantial fraction
of the relationships between the data had been captured.

LITERATURE REVIEW

It appears that there is a large number of factors that can lead to,
or contribute to, equine hoof defects. Some of these are inherent
in the animal, such as genetic attributes; others are related to
environment, care, and nutrition; yet others are associated with
mechanical stresses. Accordingly, the subject of hoof damage
can be studied from a perspective based on any of these factors,
or any combination of them. Tyznik (1988) and Giffin and Gore
(1989) were, for example, concerned about excessive dryness,
leading to extraction of moisture from the hoof faster than it can
be replaced. In this regard, Strasser (1998) has described how
wild horses will go to a water source every day to drink, but
then also will stand in it so that their hooves are re-hydrated. In
many studies the focus has been on nutritional factors. Comben
et al. (1984) suggested, for example, that biotin deficiency may
be the cause of hoof wall defects; in more recent research on the
addition of biotin to the diet of Lipizzaner horses a small but
significant effect was indeed noticed (Josseck et al. 1995a,
1995b). As well, Buffa et al. (1992) have described how hoof
horn growth rates and hardness improved, especially in the toe
and quarters regions, after biotin supplementation. Minerals,
such as calcium, are also viewed as important for hoof structure.
For instance, Kempson (1987) has documented the effect of
calcium deficiency, as well as the effect of a calcium:
phosphorus imbalance (Kempson 1990). Yager and Scott (1985)
have suggested that deficiencies of vitamin A and zinc might be
causes of hoof horn defects. In an attempt to identify the roles
of methionine and cysteine in hoof health, Ekfalck et al. (1990)
have studied the distribution of these compounds in newly laid
keratin. 

Overall, the mechanisms via which hoof cracks occur are not
well understood. There is evidence both from in vivo strain
gauge experiments (Thomason 1998) and from in vitro
photoelastic studies (Dejardin et al. 1999), as well as from
finite-element modelling (Hinterhofer et al. 1997), that most of
the surface of the hoof wall is usually loaded in compression.
The distal border of the wall may, however, experience some
horizontally oriented tension, which would explain the origin of
cracks at that border. But, cracks also form at the coronary
band, which appears not to be loaded in tension. The possible
role of shear stresses in crack formation has not been
investigated. Generally, once cracks form, the microscopic
structure of the hoof wall tends to prevent them from
lengthening, or it diverts them in less damaging directions
(Bertram and Gosline 1986; Kasapi and Gosline 1997).

Often, models of the effects of various factors on equine
physiology consist of algebraic equations in which the values of
the coefficients are typically derived from the statistical analysis
of data. The model of Johnson et al. (1992) in which pulmonary
hemorrhage in race horses is linked to exercise is, for example,
of this type. In contrast, in the work presented here, the
modelling approach is based on the use of ANNs in which

knowledge about relationships is encoded much more in an
implicit, rather than an explicit manner. Sometimes this is
advantageous. Accordingly, ANNs have been gaining favor, and
are being increasingly employed in biological and biosystems
applications. For instance, Lacroix et al. (1995) predicted cow
performance with an ANN model. Chen et al. (1995) used
ANNs to classify red wheat by analysing near-infrared diffuse
reflectance spectra of ground kernels. Lacroix et al. (1999)
modelled corn drying with ANNs. Lacroix and Kok (1999)
created a primitive greenhouse "system consciousness" with
ANNs, as part of a simulation-based controller. Suchorski-
Tremblay and Kok (1997) used ANNs to model microbial
acclimation in soil. ANNs have also been used for diagnosis in
human medicine. In this context, Snow et al. (1994) obtained a
90% success rate in the diagnosis of prostate cancer, and
Lapuerta et al. (1995) predicted the risk of coronary artery
disease based on elements of the serum lipid profile. The only
work to date based on ANNs in the context of hooves is that of
Savelberg and Van Loon (1997). They recorded strains in the
hoof wall and ground reaction forces on the hoof, and
successfully reconstructed force profiles from strain patterns.
With this work it was demonstrated that the hoof wall can be
used as a force transducer under laboratory conditions.

Artificial neural network technology as such is well-known
and described extensively in the literature. For in-depth
descriptions of ANNs and their applications, the reader is
referred to Haykin (1994) and NeuralWare (1995a, 1995b). The
terminology used herein is as presented in NeuralWare (1995a,
1995b). 

MATERIALS and METHODS

Data and data collection
Data that were directly related to the horses are referred to here
as primary data. Two kinds of primary data were collected, the
first comprising physical measurements on the animals and the
environments in which they lived and worked, the second kind
consisting of human responses to a set of questions. Some of the
human response information was obtained from the horse
owners, and some from the farriers and stable managers.
Secondary data were collected on feed and supplement
composition, the farriers, the horse owners, the stable managers,
etc. Overall, the data collected were of three types: numeric,
alphabetic, and binary, the corresponding variables being
grouped into eight categories, some of which were divided into
sub-categories. The categories are shown in Table 1, together
with many of the variables that belong to each of them. It is to
be noted that not all the system variables are listed in Table 1;
many of the secondary variables were left out for the sake of
brevity. Also, as mentioned previously, values were calculated
for a number of derived variables; these were subsequently
treated in the same manner as the primary and secondary data,
i.e., they were stored in the same way and used for modelling,
etc.

As indicated in Table 1, not all the variables for which
values were collected were subsequently used in modelling; the
intent at collection time was to ensure that enough data of
different kinds would be available during the modelling phase,
as well as during possible future work, without having to return
to the source.
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Table 1. Categories and sub-categories into which variables were grouped. Variables that were 'pre-selected' for
modelling are shown in italics; the numbers of pre-selected variables are shown in brackets.

  

Category or sub-category:

A) General Information (0)
date of visit, barn name of horse, stable identification & owner, farrier identification, horse owner identification

B) Horse Characteristics (7)
registered name of horse, gender, birth year, dam’s & sire’s breed, wither height, girth weight, back + neck conformation flaws, fore legs
conformation flaws, hind legs conformation flaws, back & limb injury, hoof wear, gait flaw, movement vice, chronic medical problem,
farrier’s comments on horse & on horse’s care

C) Activity (10)
amount of time spent in stall during summer & what part of the day, amount of time spent in stall during winter, & what part of the day,
amount of time spent in field during summer, & what part of the day, amount of time spent in field during winter & what part of the day,
type of exercise performed (involving a human), exercise intensity & duration & frequency & total time & on what surface, frequency of
bathing, type of competition & on what surface & number per year & over what period

D) Environment of the Containment Space (11)
a) stall or shed or field (6): large space’s temperature & relative humidity, ceiling type, space type & length & width & height, gross
ventilation area of space & ventilation obstruction type, flooring type & at surface dry/wet & drainage system, bedding type & at surface
dry/wet & depth & temperature & relative humidity & NH3 concentration, type & height off the floor of water & grain & hay containers
b) field/paddock (1): length, width, footing type & texture, surface covering, frequently wet areas
c) exercise/work 1 & 2 (2*2): type, length, width, footing type & depth & texture, relative humidity, surface covering

E) Nutrition (13)
a) water (1): source, hardness, amount consumed
b) grain 1 & 2, mix feed 1 & 2 (4*1): type, manufacturer, product name, daily amount fed, number of feedings
c) specialty feed (1): type, manufacturer, product name, daily amount fed, number of feedings, how long given
d) hay (1): grasses, format fed, bale size, flake mass, daily number of flakes, number of feedings
e) pasture (1): grasses, duration of use, duration of hay supplementation
f) salt (1): present, type + format, container, consumption
g) supplements 1 & 2 (2*1): type, manufacturer, product name, daily amount fed, how long given & for what reason
h) treats (1): type
i) worming medicine (1): products, frequency administered
j) dentistry (0): annually checked

F) Hoof Care (43)
a) general (7): frequency of farrier visits, hoof sealer & conditioner application, hoof treatment 1 & 2, farrier treatment for front shoes &
hind shoes
b) per hoof (4*9): overall wall quality, shape, wall colour, pre- & post-trim toe length & toe angle, wall thickness (wall + white line) at
toe, inside and outside quarters, known history
c) shoes front & rear (2*0): brand, size, length behind heel (right & left), material, shape, purpose, insert & wedge & pad & add-on,
material, purpose, nails: brand & size & number used & placement & height of clinch per shoe

G) Relatives (0)
sire’s name & famous lineage & number of generations to subject, dam’s name & famous lineage & number of generations to subject,
names of up to 6 full + half siblings & names of up to 6 offspring

H) Hoof Cracks (up to 4*7=28)
number of cracks per hoof, up to six cracks (each crack's length & location on hoof)

Whenever possible, more than one horse was examined at
any one stable. All the stables at which data were collected were
located in the province of Ontario. A total of 37 stables were
visited, 20 in the eastern region and 17 in the southwestern
region. A total of 110 horses were examined, the majority being
of the “backyard” type, meaning they were primarily pleasure
mounts, or pets. The rest were active sporting horses. The
animals that were included in the sample were selected so that
the hoof cracking data would be “balanced” for ANN training,

i.e., a wide range of hoof cracking damage levels needed to be
present, but fairly evenly distributed. Thus, the animals included
in the sample were not chosen entirely randomly from the
population available, so that the statistics obtained for average
hoof cracking etc. are therefore not statistically representative
of that population - these are also not reported here. No other
selection criteria were applied. Of the animals in the sample,
about 25% did not have significant hoof cracks at all, i.e., 0-3
mm in length, and the rest had at least one crack 4 mm in length,
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or longer. Nine farriers cooperated in the study, seven in the
eastern Ontario region and two in the southwestern region.

The measured data were obtained as follows: temperature
and relative humidity were determined with a thermo-
hygrometer (Thermor, Markham, ON). Ammonia concentration
at the bedding surface was quantified with detector tubes
hooked up to a gas pump (1 to 30 ppm #3L tubes, and a
GV100S pump, both from Gastec, Kanagawa, Japan). Lengths
were measured with a standard 6 m steel tape. Feed masses were
obtained with a kitchen balance (5 kg ± 25 g, Sunbeam), and a
spring scale (5 kg, Ohaus) to which a feed bag had been
attached that was used as a sack. Hoof and horse data were
taken with a hoof gauge (for toe angles), a caliper and a 300 mm
stainless steel ruler (for the lengths of the toes and the hoof
cracks), and a horse and pony height and weight tape (Coburn,
Whitewater, WI).

Hoof and horse scoring
The cracking damage was assessed on the basis of the physical
measurements that had been taken on each of the animals' hoofs.
Since up to six crack lengths were recorded for each hoof, i.e.,
up to 24 data values per animal, it was necessary to formulate
some composite measures so as to reduce the number of
variables that had to be dealt with. Accordingly, a number of
derived variables were defined and values calculated for these.
First, for each hoof, a hoof score was calculated from the
individual crack lengths and then, for each animal, a horse score
was calculated from the four hoof scores. The horse scores were
then used in the modelling. Both hoof and horse scores were
scaled from 0 to 9 and are dimensionless.

For the hoof score, the crack lengths were combined in such
a way as to reflect an approach that would probably not be
unlike that taken by a human in a judgment situation. This is
reflected in:

(1)Hoof Score
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where: c1, c2, etc. = crack lengths arranged from maximum to
minimum (mm).

This always resulted in an acceptable hoof score value. For
example, for horse 76, there were three cracks in the right hind
hoof, whose lengths were respectively 75, 30, and 13 mm. For
this case, the equivalent total crack length was 94.3 mm, and the
hoof score was 8.6. Also, use of Eq. 1 resulted in reasonably flat
distributions of hoof scores and horse scores, which was
desirable for ANN training.

Horse scores were derived from the hoof scores according
to:
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where: h1, h2, etc. = hoof scores.

Neural network modelling
The software used was NeuralWorks Professional II/PLUS
(NeuralWare Inc., Pittsburgh, PA). All the ANNs that were used

were of the feedforward, fully-connected type. They all had two
hidden layers, and the number of PEs in each of these was
always 2N+1, where N is the number of inputs. Networks are
described in terms of the numbers of PEs in their layers, e.g., 6-
13-13-1. The supervised back-propagation learning method was
used, based either on the Delta learning rule or on the
Normalized Cumulative Delta learning rule; the first of these
was employed during stage 1, and the second rule for stage 2 of
the modelling. For all experiments, networks were trained for
50,000 cycles. The effect of the various inputs on ANN
performance was tested directly, as well as indirectly, as well as
with a combination approach.

As mentioned previously, the modelling was done in two
stages. In the first stage, groups of pre-selected variables from
the different categories were used as network inputs, and it was
attempted to determine which ones amongst them were the most
powerful for predicting hoof damage. The indirect and direct
methods of influence determination were used in tandem in this
procedure. Overall, this resulted in the selection of a set of
twenty-two prime variables. In the second stage subsets of
different widths, ranging from five to eight variables, were
tested as network inputs in full factorial experiments, to identify
which combinations had the highest predictive capacities.

As indicated in Table 1, for several categories no variables
were pre-selected at all, and in each of the other categories only
a limited number were pre-selected for stage 1 modelling. A
number of experiments were then carried out for each of the
categories of variables, the number of experiments depending on
what inputs, or combinations of inputs, were removed for the
determination of the influence of the individual variables. For
example, for the variables related to horse characteristics, a total
of 29 experiments were run, corresponding to all combinations
of no inputs removed, and of one, and two inputs removed in
combination - this corresponds to the direct method of influence
determination. Similarly, 56 experiments were run for the
variables related to activity, etc. In total, 195 stage 1
experiments were done.

For each stage 1 experiment, an ANN was trained and then
its recall performance was evaluated, first with none of its input
PEs disabled, and then with each of its input PEs disabled in
turn, this latter procedure corresponding to the indirect approach
to influence determination. Thus, as mentioned above, the direct
and indirect methods were used in tandem in this case. When no
input PEs were disabled, the correlation coefficient between the
known output values in the training set and the output values
obtained from the ANN during recall was calculated and then
used as the measure to evaluate the networks' learning
achievement. The probability of significance as per the
Student’s t-test was also calculated for these. Thus, 195 of these
were calculated, 29 of them specifically related to horse
characteristic variables, etc. 

Corresponding to the ANN software's capacity for PE
disablement, it could also generate values of percent impact for
each of the input variables. This is a relative measure. Variables
were then judged on the basis of a number of factors including
the correlation coefficients and the average impact values
obtained for them; ultimately twenty-two prime variables were
chosen.

For stage 2 modelling, 110 data records were available, with
a total of 22 prime input variables, with the horse score again as
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Table 2. Five largest correlation coefficients obtained for Stage 1 experi-
ments for two categories of variables, in order of decreasing value. 

  

Category
of variables Input variables used

Correlation
coefficient 

Horse
characteristics

all inputs
all, less back + neck & fore legs conformation flaws
all, less back + neck conformation flaws
all, less back + neck conformation & gait flaw
all, less gait flaw & movement vice

0.8568
0.8288
0.7835
0.7704
0.7687

Activity all, less number of competitions per year
all, less exercise surface
all, less total time exercise & competition surface
all, less total time exercise & summer field time
all inputs

0.7392
0.7372
0.7350
0.7239
0.7228

  

       Table 3. Selected average percent impact values obtained for input
variables.

  

Category
 (no. values averaged) Variable name Ave. percent

impact

Horse Characteristics:
No. variables 7
No. variables shown 7
Impacts shown are
  averages of 22 values

wither height
back + neck conformation flaw
fore legs conformation flaw
hind legs conformation flaw
gait flaw
movement vice
hoof wear

48.0
74.2
50.3
43.4
60.0
72.8
68.9

Activity:
No. variables 10
No. variables shown 5
Impacts shown are
  averages of 46 values

exercise type
total time for exercise
exercise surface
competition surface
no. competitions

61.6
51.6
56.3
46.9
57.5

Environment:
No. variables 11
No. variables shown 5
Impacts shown are
  averages of 56 values

flooring surface dry/wet
bedding surface type
exercise/work space1 footing
       surface
exercise/work space2 footing
       surface
field/paddock footing surface type

55.1
40.6
67.3

56.5

89.4

the sole output variable. In stage 2, ANN performance was
evaluated both with the training set and with data to which the
network had not been exposed previously - the witheld set. To
do this in a balanced manner, for each experimental run, 10
records were chosen randomly and withdrawn from the data set
and kept apart, while the network was trained with the other
100. This was repeated independently 25 times for each
experiment so that for each stage 2 experiment an ANN was
trained and evaluated with 25 different data sets.

In stage 2 modelling, ANN performance was evaluated
exclusively on the basis of the correlation coefficient between
a network's known and recall output values. These were
calculated as for stage 1, again, together with their probability
of significance as per the Student’s t-test. However, in this case,
correlation coefficients were calculated both for the
training and for the withheld data sets. Thus, for
each experiment a matrix of 25x2 correlation
coefficients was obtained. The averages and
standard deviations of these were then computed,
and an overall experiment score derived from them
using:

Experiment Score =

(3)
05 015 10 0 35

15
. . . .

.
Rt Rt Rw Rwavg std avg std− + −

where:
Rtavg,Rwavg = averages of the 25 correlation

coefficients obtained for the
training and withheld data sets,
respectively, and 

Rtstd,Rwstd = standard deviations of the 25
correlation coefficients obtained
for the training and withheld data
sets, respectively.

The stage 2 experiments were carried out in four
series, corresponding to the number of input
variables used. First, for series 1, a full factorial set
of experiments was done in which each of the
networks had five inputs. Therefore, a total of

26,334 experiments were completed, each
consisting of 25 experimental runs with
networks that had a 5-11-11-1 architecture.
The experiments were then ranked
according to their scores and the 100 most
successful sets of five variables were
retained for the next series. Then, in series
2, each of the sets of five variables was
combined with each of the remaining 17
variables in 1700 more experiments in
which the ANNs had 6-13-13-1
architectures. Next, the best 100 sets of six
variables were combined in series 3 with the
remaining 16 variables, etc.

RESULTS and DISCUSSION

Stage 1 modelling
Some of the correlation coefficients obtained for the stage 1
experiments are presented in Table 2. For all of these the
probability of significance as per the Student’s t-test was greater
than 99.9%. In most cases the differences among the top five
coefficients for a category were quite small and the maximum
values were generally not obtained for the largest number of
variables. Overall, indirect method testing indicated that similar
modelling results could be obtained with very different sets of
input variables, and that none of the variables had an
overbearing influence on the outcome. This is a common
situation for a wide set of highly correlated variables; it has the
advantage that any variable which is not convenient to measure
can be left out of the model without undue impact, and the
disadvantage that it is not very evident which variables to use.
The choice of prime variables was therefore also based on their
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Table 5. Experiment scores obtained in stage 2 modelling; best three results are
shown for each of the four series.

  

Series Rank Score

1 1 3 4 11 13 17 0.586
1 2 3 4 11 17 21 0.578
1 3 3 6 11 13 17 0.573

2 1 3 4 11 17 21 22 0.616
2 2 3 4 14 17 21 22 0.606
2 3 3 6 14 17 21 22 0.606

3 1 3 4 9 11 14 17 21 0.662
3 2 3 4 8 11 14 17 21 0.652
3 3 3 4 11 13 14 17 21 0.650

4 1 1 3 4 11 13 14 17 21 0.694
4 2 3 4 8 9 11 14 17 21 0.664
4 3 3 4 11 13 14 17 19 21 0.664

Table 4. Variables selected for stage 2 modelling (the prime 
variables).

  

Category Variable name Variable
number

Horse characteristics back + neck conformation flaws 1
Horse characteristics hind leg conformation flaws 2
Horse characteristics movement vice 3
Activity time spent in stall during summer 4
Activity time spent in stall during winter 5
Activity time spent in field during summer 6
Activity time spent in field during winter 7
Activity competition surface type 8
Activity number of competitions per year 9
Environment flooring surface dry/wet 10
Environment bedding surface type 11
Environment footing type in exercise/work space 1 12
Environment footing type in exercise/work space 2 13
Environment field / paddock footing surface type 14
Nutrition grain type 1 15
Nutrition grain type 2 16
Nutrition specialty feed type 17
Nutrition supplements type 1 18
Nutrition supplements type 2 19
Hoof care hoof sealer application 20
Hoof care hoof conditioner application 21

average percent impact. A number of these values are presented
in Table 3. The twenty-two prime variables that were then
selected are listed in Table 4 in which they are also assigned

variable numbers, by which they are subsequently
referred to for the reporting of stage 2 modelling
results.

Stage 2 modelling
The three highest ranking input variable combinations
for each of the four series of stage 2 experiments are
presented in Table 5. For all the correlation coefficients
from which the scores were calculated the probability
of significance as per the Student’s t-test was greater
than 95%. As is evident from the values in the table,
each addition of an input variable resulted in a
substantial improvement in the score. Overall, the
change from five to eight inputs resulted in an 18%
improvement. The highest score that was attained was
0.694, with an 8-17-17-1 network.

During the stage 2 experiments it became evident
that some variables occurred relatively often in the
inputs combinations of highly ranked networks.
Variables 3 (movement vice), 4 (time spent in stall
during summer), 11 (bedding surface type), 14
(field/paddock footing type), 17 (specialty feed type),
and 21 (hoof conditioner application) all occurred more
than 75 times in the top 100 ranked networks. It is
noteworthy that between these six variables all five
categories from which prime variables were drawn are
represented, i.e., a combination of factors from all
categories seems to be the most highly predictive. The
overall winning combination with eight inputs also
contained variables 1 (back + neck conformation flaws)
and 13 (footing type in exercise/work space #2). Of
these, variable 13 occurred fairly frequently in other

highly-ranked networks, especially
in the narrower ones, but variable 1
occurred much less frequently.

To give a more complete
illustration of the highest-ranked
network's performance, typical
training and withheld data sets of
100 and 10 records, respectively,
were created de novo by randomly
choosing records, and the ANN was
trained for 50,000 cycles as usual.
Predicted horse scores were then
obtained by recalling, with both
sets. The results are presented in
Figs. 1 and 2, where they are plotted
vs the known horse scores. Of
course, under ideal circumstances
all the points would fall on the
diagonals, which are also shown on
those graphs. The correlation
coefficients for these two situations
were respectively 0.891 and 0.666.
For this particular data set, for the
training data, there was an average
difference between the real and the

predicted horse scores of 0.98 (standard deviation 1.06); for the
withheld set this difference was 1.57 (standard deviation 0.98).
These statistics were quite representative of the situation.
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Fig. 1. Performance of the highest-ranked eight-input
ANN on its training data.

Fig. 2. Performance of the highest-ranked eight-input
ANN on the withheld data.

Although in Fig. 1 it appears that the network doesn't perform
very well when the actual horse score is zero, i.e., with no hoof
cracking at all, on the average the error in the score that is
obtained is not substantially larger than for the other data points.
Thus, for these instances the average predicted horse score is
1.10 (standard deviation 1.29). Overall, on the basis of the
combination of the eight input variables chosen, and with this
type of network and training approach etc., for animals not
included in the training set, the horse score can be predicted
within approximately 2.5 points about 65% of the time, i.e.,
within one standard deviation of the mean difference between
real and witheld sets. Based on this, a fuzzy, four-level
classification scheme could be implemented, and the results
accepted with reasonable confidence.

CONCLUSIONS

The overall goal of the project was to find a practical and
effective method to model and predict hoof cracking on the
basis of relatively small groups of variables whose values are
obtainable at low cost and with relatively little effort. This goal
was established for a number of purposes, and artificial neural
network technology was examined as the prime candidate for
the modelling work.

Reasonable progress was made towards the overall goal, and
the project was deemed rather successful, especially because it
was a first attempt at modelling this situation with ANNs. The
results were also encouraging in a wider context in that they
support the position that it is quite feasible to model very
complex, wide data sets derived from biological systems with
fairly narrow ANNs (see also Lacroix et al. 1995). The success
of this approach depends partly on a judicious choice of
variables, together with their combination into group
representatives, as well as the establishment of relevant
performance criteria. Accordingly, in the project, variables were
combined into scores, and performance evaluation was based on
impact and correlation measures. In this case, the most
influential variable was "movement vice", a binary variable. It
is not difficult to envisage how its value might be determined
automatically with good certainty, so that its inclusion for the

purpose of assessing an individual animal's hoof damage level
is easily justified. However, for some of the other purposes, this
might not be so. Thus, the selection of input variables must
always be partially based on the specific purpose of modelling.

The precise quantitative description of hoof cracking
damage is difficult at best, and one would normally expect
answers in terms of fuzzy, natural language descriptors such as
"hardly damaged at all", "severely damaged", etc. (see Lacroix
et al. 1998). In this regard, the predictive capacity of the
highest-ranking network is presently adequate to fairly
dependable in producing ratings in terms of a four-level
descriptor set. When combined with fuzzy reasoning
mechanisms, this is quite sufficient to make a useful
management contribution. Analysis and advice generation could
be done in a completely automated manner or could take place
via a user interface (see Kok and Gauthier 1986; Gauthier and
Kok 1989). It is felt that it would not be very difficult to
improve ANN performance so as to be able to clearly
differentiate between about eight to ten levels of hoof damage.
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