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ABSTRACT 
As agricultural machinery moves into the digital era, 
significant developments in available technology will likely 
make autonomous farm vehicles more feasible, affordable, 
and desirable. One of the challenges of effective 
autonomous vehicle control specific to agriculture is the 
ability of the vehicle to interpret and adapt to constantly 
changing conditions. Auditory information is a primary 
indicator of changing conditions to an in-cab operator, 
particularly in situations such as detecting mechanical 
overload in a combine. This paper explores the potential for 
auditory information to be used in autonomous vehicle 
control. The sound was recorded at a sampling rate of 48 
kHz near the straw chopper of a combine for three different 
operating modes during the same harvest day. Samples from 
each clip were segmented and analyzed to extract 31 audio 
features.  Six different feature selection methods ranked the 
importance of each of the 31 features to identify the features 
that lead to accurate classification with a minimal number 
of calculations. These six rankings were assessed by Fagin’s 
algorithm to yield two features (both mel-frequency cepstral 
coefficients).  Twenty-five distinct machine learning 
classification methods were evaluated using these two 
features.  Three of these classification methods reached 
100% accuracy, and 9 classifiers exceeded an individual 
success rate of more than 99% using those same features. 
These feature extraction and classification steps took less 
than 1 s, assuring that such a classification system could be 
implemented in real-time. 
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RÉSUMÉ 
À mesure que les machines agricoles entrent dans l’ère numérique, 
les développements importants de la technologie offerte rendront 
probablement les véhicules agricoles autonomes plus pratiques, 
abordables et attrayants. L’un des défis du contrôle efficace des 
véhicules autonomes spécifiques à l’agriculture vient de la 
capacité du véhicule à interpréter et à s’adapter à des conditions 
qui changent constamment. Les informations auditives sont un 
indicateur primaire des conditions changeantes pour un opérateur 
en cabine, en particulier dans des situations comme la détection de 
la surcharge mécanique d’une moissonneuse-batteuse. Cet article 
explore le potentiel d’utilisation des informations auditives dans le 
contrôle des véhicules autonomes. Le son a été enregistré à une 
fréquence d’échantillonnage de 48 kHz près du broyeur de paille 
d’une moissonneuse-batteuse pour trois modes de fonctionnement 
différents au cours d’une même journée de récolte. Des 
échantillons de chaque enregistrement ont été segmentés et 
analysés pour extraire 31 caractéristiques audio. Six méthodes 
différentes de sélection des caractéristiques ont classé 
l’importance de chacune des 31 caractéristiques afin d’identifier 
celles qui permettent une classification précise avec un nombre 
minimal de calculs. Ces six classements ont été évalués par 
l’algorithme de Fagin pour obtenir deux caractéristiques (toutes 
deux des coefficients cepstraux à fréquences selon l’échelle de 
Mel). Vingt-cinq méthodes distinctes de classification par 
apprentissage machine ont été évaluées à l’aide de ces deux 
caractéristiques. Trois de ces méthodes de classification ont atteint 
une précision de 100 %, et neuf classificateurs ont dépassé un taux 
de réussite individuel de plus de 99 % en utilisant ces mêmes 
caractéristiques. Ces étapes d’extraction de caractéristiques et de 
classification ont pris moins d’une seconde, ce qui garantit qu’un 
tel système de classification peut être mis en œuvre en temps réel. 
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INTRODUCTION 
 When seated inside the cab of the agricultural machine, 
the operator has access to various forms of sensory 
information (i.e., visual, auditory, tactile, olfactory) that can 
be used to supplement or complement information that 
machine designers have selected to display via the 
machine’s instrument panel. Human operators must use a 
significant amount of intelligence and judgment to process 
these sensory cues rapidly and then react accordingly 
depending on the required vehicle operation or maneuver 
(Reid et al. 1999). In essence, the operator is an in-situ 
sensor capable of detecting sensory information used in 
decision-making.  
 It is recognized that machinery operators are often able 
to detect existing or impending problems from the changes 
in the sound produced by the mechanical components of the 
machine. Karimi et al. (2008) reported that the addition of 
auditory cues did not improve steering performance (in a 
simulated agricultural vehicle), perhaps because the 
steering is a purely visual task. However, auditory cues did 
improve the monitoring task. Donmez et al. (2009) 
investigated the use of sonification (continuous auditory 
alerts) during the control of unmanned aerial vehicles and 
found that visual information supported by sonifications 
yielded faster reaction times than visual information 
supported by discrete auditory signals. Sound can be a key 
part of the mechanical analysis in a conventional setting 
(Donmez et al. 2009). Many mechanics use sound as a tool 
for preliminary diagnosis, and even individuals with little 
mechanical aptitude understand that an unusual sound in a 
vehicle is a signal of an engine malady. Combine operators 
rely on sound as an indicator of over-capacity when 
threshing (Donmez et al. 2009). Even with extensive visual 
displays of information in modern combines, audible cues 
to overload conditions may allow for quicker response 
times (Donmez et al. 2009). Adjusting the concave 
clearance, cylinder speed, and the fan speed may be 
necessary to maximize harvest efficiency while minimizing 
losses and reducing seed damage. As conditions change 
throughout the day, these parameters should be monitored 
and adjusted. Automating these adjustments or even 
alerting an operator to the evolving conditions requiring 
adjustment would be a significant step forward in a fully 
autonomous harvesting machine. In the case of fully 
autonomous machines, it is unlikely that a human 
supervisor will be directly listening to each machine. 
However, it is important to determine whether real-time 
auditory information could contribute to the task of 
remotely supervising an autonomous agricultural machine.   
 This paper will explore the possibility of using the 
auditory information produced by a combine to detect 
changes in its mode of operation. If changes can be detected 
and accurately categorized using machine learning 
techniques, there may be a reason to incorporate such 
information into an automation interface for remote 
supervision of autonomous agricultural machines. The 
research described in this study expands upon the work 

previously presented at a conference by Simundsson et al. 
(2019). We have enriched the research by using more 
features and classification methods to develop a robust 
solution which can be implemented in a real-time system. 
The performance evaluation was verified by using a 10-fold 
cross-validation strategy. 
LITERATURE REVIEW 
Sound analysis & classification 
Sound waves can be represented in several ways, but to 
analyze or manipulate them, they are represented in the 
form of an electrical quantity (Priemer 1990). Classification 
of music is an excellent example of processing audio signals 
for rapid identification. Music Information Retrieval (MIR) 
is a field of science that is becoming increasingly important 
as consumers become increasingly accustomed to tailored 
experiences in everything from movie selection to curated 
playlists of new songs. The goal of pattern recognition is to 
create a classifier that can analyze specific features of an 
item as its input and return a label or value indicating 
grouping to which the item belongs (Mahana and Singh 
2015). The specific patterns that the algorithm can 
recognize are based on features of the signal. A feature is a 
distinctive measurement, transform, or structure component 
extracted from a pattern distinguished from a regular vector, 
to be used for classification. The purpose of feature 
extraction is to identify information that is most useful for 
determining the classification of the signal. The features are 
the inputs to the algorithm that are expected to predict the 
outcome.  An example outside of music retrieval is 
classifying brain electrical activity from an 
electroencephalogram (EEG) signal to diagnose (Al-
Fahoum and Al-Fraihat 2014).  
Frequency analysis 
 Time-frequency analysis is commonly used to 
characterize phenomena such as vibration, music, and 
biomedical signals (Nisar et al. 2016). Fourier transforms 
are typically used to gain useful information from these 
phenomena, though this method ignores all time-related 
information. The ubiquitous use of the Fourier transform in 
signal processing, and analysis and unanimous acceptance 
as a valued function make it an obvious candidate for 
evaluation in this study.  
 Fourier transform, designed initially for continuous 
functions, can be numerically computed on digital signals 
using the Discrete Fourier Transform (DFT). The reduction 
of computational effort in FFT makes real-time DFT 
analysis practical in situations when it would otherwise be 
unfeasible. The FFT is a one-push algorithm that allows 
efficient implementation of the length N Periodogram (PG) 
of a signal x(n) calculated as: 

 for k = 0,1, …, N-1
 
  (1) 
where k is the frequency bins. 
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 The FFT allows for simplification, reduced storage 
requirements, and reduced computational error. The FFT 
performs best when processing stationary signals compared 
to non-stationary signals (Al-Fahoum and Al-Fraihat 2014). 
It is particularly appropriate for narrowband signals (such 
as a sine wave) and has superior speed over almost all other 
methods for real-time applications. A stationary signal is 
one in which the statistical properties of a random process 
do not depend on the time index. The FFT is very suitable 
for real-time analysis because of its ubiquitous use in signal 
processing, error reduction, speed of processing, and low 
storage requirements. 
 Different from the Fourier transform, the Mel-
Frequency Cepstrum (MFC) is based on a linear cosine 
transform of a log power spectrum on a nonlinear Mel 
frequency scale; Mel scale being a conversion from a linear 
frequency f to a logarithmic one to go from Hz to Mels as: 
 Mel{f}=2595log(1+f/700) (2) 
 Based on human perception and knowledge that the 
human ear can be seen as being composed of a bank of 
filters that are non-uniformly spaced with more filters 
concentrated in the lower bands than in the higher 
frequency ones, it has been noted that filters spaced linearly 
at low frequencies and logarithmically at the other end of 
the spectrum capture phonetical characteristics of human 
speech (Davis et al. 1980).   As indicated in Equation 2, this 
logarithmic spacing makes Mel-frequency analysis a useful 
technique for speech processing.   
 A useful frequency band starts at a low frequency, not 
necessarily zero, and is divided into M channels equidistant 
in the Mel frequency domain. Each channel is formed via a 
triangular frequency window. Consecutive channels are 
half overlapping. Figure 1 shows an example of such a filter 
bank. 
 The centre frequencies of the channels in terms of the 
FFT bin indices (k for the ith channel) are calculated as: 

 𝑓!! = 𝑀𝑒𝑙"# &𝑀𝑒𝑙{𝑓$%&'%} +
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 𝑙 = 1,2, … ,𝑀 (3) 
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 The output of the Mel filter is the weighted sum of the 
FFT magnitude spectrum values in each band. Triangular, 
half-overlapped windowing is used as follows:  
 𝑓𝑏𝑎𝑛𝑘* = ∑ 1"!234!)*0#
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where l = 1, ..., M-1, cbin0 and cbinM denote the FFT bin 
indices corresponding to the starting frequency and half of 
the sampling frequency, respectively:  
 𝑐𝑏𝑖𝑛! = 	round ,"!"#$"

"#
𝑁. and 𝑐𝑏𝑖𝑛$ = 𝑁/2. 

The output of the Mel filtering is subjected to a natural 
logarithm function:  
 𝑓* = 	ln(𝑓𝑏𝑎𝑛𝑘*), 𝑙 = 1,… ,𝑀 − 1 (6) 
Figure 2 shows an example of a periodogram and a mel-
spectrogram for three different sounds of a harvester. An 
important application of the MFC is the extraction of 
coefficients known as Fourier Mel-Frequency Coefficients 
(MFCC), defined as: 
  𝐶3 = ∑ 𝑓*𝑐𝑜𝑠 G

63
(
(𝑙 − 0.5)K , 0 ≤ 𝑖 ≤ 𝑁(788(

*5#  (7) 
where fl is defined as in (6), and NMFCC is the total number 
of coefficients. 
 The use of MFCCs to extract features from audio has 
been a technique used in audio classification (Li et al. 2013; 
Shen et al. 1999; Rong 2016). For example, using a 
treebagger as a classifier, feature vectors consisting of 10 
MFCCs, the spectral centroid and spectral flux were 
successfully used for audio recognition by Li et al. (2013). 
Using a Mel-Spectrogram of 30 bands, MFCCs were used 
as audio features by Shen et al. (1999) to recognize 
Mandarin base syllables in quiet conditions and the 
presence of microphone variations. Another more recent 
example for audio classification of sounds using not just the 
MFCCs but also zero crossings and short time energies to 

 

Fig. 7. Scatter plot of the features corresponding to the 
mel-frequency cepstrum coefficients C7 and C8. 
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form feature vectors was presented in Rong (2016) using a 
Support Vector Machine (SVM) as a classifier. 
Furthermore, an SVM and thirteen MFCCs extracted from 
audio segments were used to classify four types of medical 
pathologies: chronic laryngitis, cyst, Reinke edema and 
spasmodic dysphonia (Nawel et al. 2015). Detection of air 
drone sounds from other sounds in the sky (i.e., birds, 
airplanes, and thunderstorms) was also possible (Anwar et 
al. 2019). Thus, evidence suggests that this approach can be 
applied to areas other than speech recognition. 
Research Objective 
There has been a significant amount of research in recent 
years on using sound in classification and identification 
systems, particularly in music retrieval. There are various 
ways to do this, but one of the most straightforward and 
most robust is to take the Fast Fourier Transform of a signal 
and seek out specific features for identification. If 
characteristic features can be identified, they can create a 
classification system through various methods. Recent 
advances in computing power have made neural networks 
an excellent candidate for training classification models, 
mainly if more data is available.  
 This research aimed to determine whether the 
methodology used in other sound classification applications 
can also be used to classify machinery operations. Mainly, 
it will focus on the ability of machine learning techniques 
to correctly identify the operating condition of a combine 
with the goal of creating an analysis technique that could be 
used for real-time monitoring and control of an autonomous 
agricultural machine. In a study of driver perception 
response time, Olson and Sivak (1986) found that the 
average time for a person to sight an obstacle and apply the 
brake was 1.6 s for 95% of test drivers, regardless of age. A 
similar study showed that the 85th percentile of people have 
reaction times of 1.3-3.6 s depending on the driving 
conditions (night/day, moving vs stationary obstacle, etc.) 
(Triggs and Harris 1982). Though their studies took place 
on highways using personal vehicles, they cover a variety 
of driving conditions, and we can assume that reaction times 
to stimulus while operating farm machinery would be 
similar. Therefore, any system that can provide a real-time 
reaction time (i.e., time from sensing the issue to 
implementing a response mechanism) of less than 1 s can 
be considered faster than a human response and sufficient 
for a vehicle control system. 
EXPERIMENTAL METHOD 
Sound recordings were taken from harvest video collected 
during the 2017 canola harvest from a field near Selkirk, 
MB. The canola was harvested with an S680 John Deere 
combine, and video was captured with a GoPro Hero 
Session camera. The recordings were taken from the rear of 
the combine near the straw chopper (see Figure 3), always 
when the combine was in forward motion. All recordings 
were taken in the same field on the same day from the same 
machine. Sound, sampled at a rate of 48 kHz with AAC 
compression and automatic gain control, was lifted from the 
video and converted to .wav files for analysis. 

Sound recordings were isolated into three different combine 
operating modes (classes): 
• Mode 1: The combine’s engine is running, but 

mechanized threshing is not engaged (“Empty”) 
• Mode 2: The combine’s engine is running, and 

mechanized threshing is engaged with no actual threshing 
being performed (“Engaged”) 

• Mode 3: The combine’s engine is running, and 
mechanized threshing is engaged and utilized at 
approximately 80% capacity (“Full”) 

A short clip of sound (30-36 s) was taken from each 
operating mode as a representative audio sampling for that 
operating mode. Each operating mode was assigned a class 
(1, 2, or 3).  Each recording was considered a stationary 
signal, independent of time, and the combine ran in a steady 
state during each clip. Each clip was segmented into 
identically sized segments of 5000 samples (104.2 ms) to 
ensure that enough time was available to extract the features 
and perform the classification in less than the required 1 s 
metric.    
AUDIO FEATURE EXTRACTION 
The periodogram (PG) was calculated for each segment as 
in Equation 1 using 5000 audio samples, and the resulting 
PGs were grouped by class.  Each block was also analyzed 
using the MCF using the same samples as explained in a 
previous section. 
Thirty-one features were selected to build a classification 
model. Defining i as a frequency position and yi as the 
amplitude of the PG at that frequency, the features can be 
calculated as follows (the first eight features can be 
visualized in Figure 4):  
• f1: The frequency bin of the first dominant peak (P1) 
• f2: The frequency bin of the second dominant peak (P2) 
• f3: The frequency bin of the third dominant peak (P3) 

Fig. 3. Location of the GoPro during operation from 
which sound was lifted. 
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Fig. 4. Visual interpretation of the first six features. 

• f4: The distance between the first and second dominant 
peaks  

• f5: The distance between the second and third dominant 
peaks  

• f6: The ratio of the magnitude of the first and second 
dominant peaks (P1/P2) 

• f7: The ratio of the magnitude of the first and second 
dominant peaks (P2/P3) 

• f8: The center of gravity (spectral centroid). 

 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 	∑ 3:,,
∑ :,,

                 (8) 

• f9: Coefficient of variation.  Defined as the ratio of the 
standard deviation σ to the mean μ: 

 𝐶𝑉 =	 ;
<
                     (9) 

• f10: Spectral spread  

 𝑠𝑝𝑟𝑒𝑎𝑑 = R∑ (3"!)4%'>3?)$,
∑ :,,

  (10) 

• f11: Spectral skewness  

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = R∑ (3"!)4%'>3?)-:,,
($A')&?)-∑ :,,

 (11) 

• f12: Spectral kurtosis  

 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = R∑ (3"!)4%'>3?).:,,
($A')&?).∑ :,,

  (12) 

• f13: Spectral entropy  

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = "∑ :,BCD	(:,)
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• f14: Spectral flatness  
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• f15: Spectral crest  
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• f16: Spectral decrease  
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• f17 to f30: Fourteen Mel-frequency cepstral coefficients 
calculated as in (7) 

• f31: Spectral slope  

𝑠𝑙𝑜𝑝𝑒 =
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                                         (17) 

where fk is the frequency in Hz corresponding to bin k, μf  is 
the mean frequency, and μs is the mean spectral value. 
FEATURE SELECTION METHOD 
Computing all the features in the previous section can be a 
time-consuming task. This is one good reason why only a 
few features should be used for a real-time classification 
system and highlights the importance of selecting the most 
valuable features.  As Petri (2020) indicated, it is not just 
the amount of data but the data significance and usefulness 
for the application that must be considered. The importance 
of selecting the right type and number of input features in a 
classifier can be assessed mathematically. This is known as 
feature engineering, the systematic process that involves the 
selection of a subset of features that both speeds up the 
classification by performing fewer calculations and 
improves the performance of a machine learning algorithm 
(Duboue 2020). With this in mind, we used six different 
selection methods that ranked all 31 features. 
Method 1: Univariate feature ranking for classification 
using chi-square tests (FSCHI2) 
Chi-square tests evaluate the worth of a feature by 
computing the value of the chi-squared statistic with respect 
to a class.  The initial assumption is that two features are 
unrelated, and it is measured by the chi-squared metric: 

 𝜒H = ∑ ∑ TW,4"X,4U
$

X,4
!
Y5#

'
35#                                                      (18) 

where,	𝑂3Y is the observed frequency and	𝐸3Y is the expected 
frequency. The greater this metric, the less likely is the 
assumption of the two features being unrelated (Novaković 
et al. 2011; Liu et al. 1995).  
Method 2: Minimum redundancy maximum relevance 
(FSMRMR) 
This method selects a subset of features having the most 
correlation with a class (relevance) and the least correlation 
between themselves (redundancy). The features are ranked 
according to the minimal-redundancy-maximal-relevance 
criteria. Relevance can be calculated by using the F-statistic 
(for continuous features) or mutual information (for discrete 
features), and redundancy can be calculated by using the 
Pearson correlation coefficient (for continuous features) or 
mutual information (for discrete features) (Ding et al. 2003; 
Radovic et al. 2017).  
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Method 3: Feature selection using neighbourhood 
component analysis for classification (FSNCA) 
This method learns the feature importance by using a 
diagonal adaptation of neighbourhood component analysis 
(NCA) with regularization (Yang et al. 2012; Malan et al. 
2019). Neighbourhood component analysis measures the 
Mahalanobis distance used in the KNN classification 
algorithm. A feature selection technique selects the best 
subset of features by maximizing an objective function that 
evaluates the average leave-one-out classification accuracy 
over the training data. The algorithm assesses a weighting 
vector w that corresponds to the feature vector xi by 
optimizing the nearest neighbour learning classifier. A 
reference sample point xj is selected for the sample xi from 
all the samples. The probability Pij of xj being chosen as a 
reference point for xi from all the samples is higher 
depending on the closeness of the distance between the two 
samples. 
Method 4 and 5: Rank importance of predictors using 
ReliefF algorithm using 5 and 10 nearest neighbours 
(ReliefF5 ReliefF10)  
The algorithm randomly selects a sample x from the training 
set and searches for k nearest neighbour samples of the same 
class and k nearest neighbour samples of the non-similar 
classes. Using the Euclidean distance, the closest nearest 
neighbour samples from each class are selected. Each 
feature's relevant weight is assigned by comparing the 
interclass distance and interclass distance from the 
neighbour samples. This procedure is repeated on each 
feature sample, and each feature is assigned a weight. The 
algorithm penalizes the predictors that give different values 
to neighbours of the same class and rewards predictors that 
provide additional values to neighbours of different classes 
(Kononenko 1994; Robnik et al. 2003). 
Method 6: Feature importance using a tree bagger for 
classification (TreeBagger) 
When using a tree bagger for classification, compute the 
feature importance by permuting the values of features 
across every observation in the data set and measure how 
much worse the MSE becomes after the permutation 
(Breiman 2001). This process is repeated for each feature. 
 

COMBINING ALL THE RANKINGS 
Method 1: Fagin’s algorithm 
Table 1 shows the rankings of the best 10 features (as 
described above), in descending order of importance, 
obtained using the six methods described in the previous 
section. 
 We used Fanig’s algorithm (Wimmers et al. 1999) to 
combine all the different feature selection choices from 
Table 1 and to select a final subset of features to be used in 
a classifier. The method sequentially accesses all lists in 
parallel until there are k objects that have been seen in all 
lists, in our case, every feature selection method ranking. 
This simple and elegant technique keeps aggregating 
features in order of importance. As seen in Table 1, each 
row seen as an iteration of the algorithm shows that feature 
19, the Mel-frequency cepstral coefficient C3, shows five 
times in the very first iteration (first row of the Table) and 
by the fourth iteration (fourth row of the table), it has been 
chosen by all the algorithms. By the seventh iteration, 
coefficient C2, feature 18, is present in all the rankings.  
 Figure 5 shows the final rankings after 7 iterations. Only 
two features (18 & 19) were present for all six calculation 
methods used. By contrast, four features (4, 12, 26 & 27) 
appeared only once. 
 

Table 1. Rankings of the best 10 features in descending order of importance. 
Iteration Method 1: 

FSCHI2 
Method 2: 
FSMRMR 

Method 3: 
FSNCA 

Method 4: 
ReliefF5 

Method 5: 
ReliefF10 

Method 6: 
TreeBagger 

1 19 19 8 19 19 19 
2 18 8 10 20 20 20 
3 20 11 12 22 22 31 
4 8 27 19 18 18 8 
5 1 4 18 24 24 18 
6 31 31 11 14 26 22 
7 10 18 20 12 17 1 
8 29 20 27 26 12 28 
9 22 29 23 10 11 10 
10 23 22 24 17 8 6 

 

Fig. 5. Feature importance according to Fanig’s algorithm. 
The curve represents the cumulative total. 
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Fig. 6. Feature importance using PCA analysis.   

laptop with a 64 bit Intel i7 CPU @ 2.6 GHz and 16 GB of 
ram, and the Matlab platform version 2020a. 
 Looking at Figure 2, the frequency content of these 
audio signals does not exceed 1 kHz, opening the possibility 
of sampling at a lower rate, in this case, 2 kHz. This 
reduction of sampling frequency increments the time 
between samples. It allows for implementing the solution in 
a computer platform that is not as fast as the one used, as 

Method 2: First Principal Component Projection Score 
(FPSPS) 
Since some features are derived from functions of others, a 
final ranking considering Principal Component Analysis 
(PCA) was also considered. Let’s define each entry on 𝑋 =
{𝑥#, 	𝑥H, … , 𝑥Z} as one of the 5000 audio samples blocks 
extracted from the three audio files. Let 𝐹 = {𝑓#, 	𝑓H, … , 𝑓[#} 
be the set of 31 features extracted from each block so that 
𝑥3Y = 𝑓Y(𝑥3) denotes the jth feature of the ith block. Let 𝐹𝑆 =
{FSCHI2, FSMRMR, FSNCA, ReliefF5, ReliefF10, TreeBagger} 
be the set of the different feature selection methods that 
performed the ranking on Table 1.  
To combine these different scorings, the FPSPS method 
considers each feature 𝑓Y as an entry on X and the scoring 
lists of the different feature selection methods becomes the 
features (Filchenkov et al. 2015). To reduce these scoring 
options to a final one, this can be seen as a dimension 
reduction problem in which the first principal component 
using PCA yields a final scoring. Results using this method 
yields the following importance for the 31 features, as 
shown in Figure 6. As can be seen, features 19 and 18 are 
the most important ones agreeing with the results obtained 
using Fagin’s. 
RESULTS 
From Figures 5 and 6, we can identify two features from the 
Mel-frequency cepstrum ones, coefficients C7 and C8, as 
the most important features for classification. Figure 7 is a 
scatter plot of those two features where we can see how they 
cluster nicely for the three sound cases. 
 We used 25 different classifiers using 10-fold cross-
validation and selected the two and three mel-frequency 
cepstrum features chosen in the previous sections as inputs. 
Table 2 summarizes the results. 
 Using the two features identified by the final rankings 
yielded 100% accuracy for three of the 25 classification 
methods. We used an order 3 polynomial kernel for the 
SVM Cubic classifier. For the SVM Medium Gaussian, the 
kernel used was Gaussian with a kernel scale of 1.4 
(Christianini et al. 2000). For the Neural Network, one 
hidden layer with ten nodes and scaled conjugate gradient 
backpropagation was used for training.  
 Table 3 lists the execution times for feature extraction 
and classification. Processing was completed using an Asus 

Fig. 7. Scatter plot of the features corresponding to the 
mel-frequency cepstrum coefficients C7 and C8. 

Table 2. Results of 10-fold cross-validation for two and 
three mel-frequency cepstrum features. 

  Features used 
Classification C7,C8 C7,C8,C9 
Tree (fine) 98.6 98.8 
Tree (medium) 98.8 98.8 
Tree (coarse) 98.8 98.8 
Linear discriminant 99.6 99.2 
Quadratic discriminant 99.6 99.2 
Naïve Bayes (Gaussian) 98.3 99.6 
Naïve Bayes (Kernel) 98.8 98.3 
SVM (linear) 99.6 99.2 
SVM (quadratic) 99.6 99.2 
SVM (cubic) 100 99.2 
SVM (fine Gaussian) 92.9 98.3 
SVM (medium Gaussian) 100 99.2 
SVM (coarse Gaussian) 98.8 98.8 
KNN (fine) 99.2 98.8 
KNN (medium) 99.6 98.8 
KNN (coarse) 77.2 77.2 
KNN (cosine) 98.3 98.3 
KNN (cubic) 99.6 98.8 
KNN (weighted) 99.6 98.8 
Ensemble (boosted trees) 40.2 40.2 
Ensemble (bagged trees) 99.6 99.2 
Ensemble (Subspace discriminant) 98.8 98.8 
Ensemble (Subspace KNN) 92.9 99.2 
Ensemble (RUSBoosted trees) 81.7 82.2 
Neural network 100 99.6 
 



2.20	 LE	GÉNIE	DES	BIOSYSTÈMES	AU	CANADA	 			Thomas	et	al.	

  

the same number of operations will be needed to be 
completed in a longer execution time. It is expected that the 
ranking of the Mel coefficients will differ, as the filter bank 
shown in Figure 1 will cover the frequencies between 0 to 
10 kHz and the distribution of the sinusoidal components of 
the audio signal would spread differently in the filter bank. 
Having this in mind, the audio signals were down sampled 
to have a 2 kHz sampling frequency effectively, computed 
the Mel coefficients and ranked the importance of the 14 
coefficients using the FPSPS method. Figure 8 shows the 
results. As expected, the same coefficients are chosen when 
the ranking of the Mel coefficients is done at the 48 kHz 
sampling frequency but differs for the 2 kHz case. 
 Figure 9 shows the scatter plot of coefficients C1 and C10 
when sampling at 2 kHz. As can be seen, 100% accuracies 
are achieved using the same classifiers highlighted in Table 
2.  
CONCLUSIONS 
In this paper, a method for creating a real-time classifier for 
classifying sounds from an operating agricultural machine 
(combine harvester) has been presented. The technique used 
the mel-frequency cepstral coefficients for feature 
extraction. Using six different feature selection methods 
and combining the feature rankings using Fanig’s 
algorithm, two features were identified as the most 

important features for classification. Feature vectors were 
calculated for three different operating modes of the 
combine harvester: 1) Engine running with no threshing, 2) 
Engine running and threshing engaged but not loaded, and 
3) Engine running and threshing engaged at approximately 
80% capacity. Using the two features identified by Fanig’s 
algorithm yielded 100% accuracy for three of the 25 
classification methods. 
 At audio sampling rates of 48 kHz and 2 kHz and a 
segment size of 5000 samples, the data collection and 
execution times of the feature extraction and classification 
steps are sufficiently fast that future implementation of 
these results could be an automated classification system 
that produces a final decision that is based on five 
consecutive classifications (and taking the majority 
decision based on those five consecutive classifications). 
Thus, this method can successfully be used for real-time 
analysis and control of a combine harvester. The simplicity 
of using only one type of feature (Mel coefficients) and that 
of the chosen classifier (SVM) allow us to envision a low-
cost hardware implementation. With further refinement, 
this information may be used to estimate and adjust the 
loading of the threshing system for optimal performance, 
reducing downtime and mechanical damage while 
increasing harvest efficiency. 
RECOMMENDATIONS AND FUTURE WORK 
Further work in this area should include a more significant 
number of operating modes. It would be useful to identify 
events that may cause machinery damage or harvest delays, 
such as overloading the feeder house, which can cause 
lengthy delays due to the required shutdown and manual 
extraction of material. Increasing the dimensionality of the 
classifier would allow it to provide more information to a 

 

Table 3. Execution times for feature extraction and 
classification. 

Step Execution time (s) 
Feature extraction 0.00054 
SVM Cubic classification 0.0063 
SVM Medium Gaussian classification 0.0047 
Neural network classification 0.0077 

 

Fig. 9. Top: Scatter plot of coefficients C1, and C10 for 2 
kHz sampling. 

Fig. 8. Top: Importance of the Mel coefficients when 
sampling at 2 kHz using FPSPS. Bottom: The 
same coefficients are chosen by the FPSPS 
method when keeping the 48 kHz rate. 
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  remote operator, an automatic controller, or provide 
valuable data for diagnostics in machinery maintenance and 
repair. Future work can also include using spectrograms to 
train a classifier, different features, or combinations of 
features to optimally identify different operating modes or 
sensor selection/placement to optimize data collection and 
reduce this system's initial and maintenance costs.  
 Automatic feature extraction and selection could also be 
used with no need to visually inspect the absolute FFT for 
each class and manually select features. Matlab, Weka, and 
other machine learning tools (scikit-learn.org) offer this 
functionality and would likely provide an optimal set of 
features for efficient classification. 
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