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Abstract The objective of this project is to build a solar radiation model which will be incorporated in 
a larger ecosystem model. The method for calculating solar radiation intensity outside of the Earth’s 
atmosphere is well known, but the incoming flux is attenuated considerably while traveling through 
the atmosphere. The attenuation depends mostly on atmospheric composition and cloud distribution, 
which are difficult to predict. The model described here is based on historical data. Measured daily 
overall radiation (DOR, kJ/m2) data for four Canadian cities (Vancouver, Winnipeg, Montreal, Halifax) 
were acquired from the Canadian Meteorological Service. Annual DORs were then analyzed and 
decomposed with a Fourier transform procedure. This resulted in sets of descriptive parameters for 
the four cities from which new sets of annual DORs can be synthesized. The model was tested to 
ensure that the generated data were statistically sufficiently similar to the original sets. 
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Introduction 
The objective of this project is to provide suitable solar radiation predictions to a larger 
ecosystem model. This ecosystem model is not constructed after any existing ecological 
environment. Instead, it is based on a computerized virtual world where we can designate the 
system composition and study the model outcomes under a set of forcing functions (Lanphere 
and Kok, 2004). Currently, there are two forcing functions, temperature and solar radiation. The 
solar radiation plays the role of the unique energy source in the ecosystem. In this project, we 
aim to emulate the actual radiation intensity pattern of four Canadian cities: Vancouver, 
Winnipeg, Montreal, and Halifax. The outputs are expected to be similar to reality, in a statistical 
manner, so that appropriate amounts of energy are allocated in the virtual ecosystem. 

Extraterrestrial solar radiation can be described as a function of the sun-earth distance, the 
earth’s inclination and the sun’s zenith angle. Its value is deterministic for any latitude on earth, 
and for any given set of year, day and time. Nevertheless, atmospheric constituents and water 
molecules of clouds reflect, scatter and absorb the solar flux when it is traveling through the 
atmosphere. This attenuation effect depends mostly on atmospheric composition and cloud 
distribution, which are very difficult to predict. A sample set of one year’s daily overall solar 
radiation measured in Montreal is shown in Figure 1. The real data display a trend similar to that 
of the theoretical, un-attenuated line. However, the discount is obvious. Daily fluctuation in real 
data varies dramatically and randomly. On a cloudy day, the sky could become very dark even 
in the summer.  

 
Figure 1 Sample annual daily solar radiation energy, kJ/m2/d 

The proposed model, instead of studying the atmosphere and the clouds, studies the historical 
on-surface radiation measurements. The variable of interest is the daily overall solar energy, 
DOR (kJ/m2/d). One year’s DORs are considered as a signal, and one signal is analyzed at a 
time. Multiple years’ signals of one city bear the same statistical characters. The statistical 
characters are summarized with a set of model descriptors which will be used to synthesize new 
annual DORs on demand. The synthesized data should be statistically similar to the original set. 
The output of this model will represent an averaged, typical trend of the history, rather than 
forecast any future extreme situations.  

To fulfill its role in the ecosystem simulation, this model needs to provide unlimited radiation 
data in an adequate granularity. The reason is that the simulation time period may vary from a 
few days to several decades, depending on the objective of the study. Hence this radiation 
model should be able to generate as many DORs as required for the simulation. Moreover, to 
ensure the similarity between the generated data and the real data, an evaluation series is 
proposed. First of all, the comparison of model and real data in different time granularities will 
be examined. The granularities include DOR, weekly average DOR (WDOR), monthly average 
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DOR (MDOR), and the difference of DOR between two consecutive days (DDOR). Then, the 
histograms of DOR, WDOR, MDOR and DDOR will be inspected. Finally, statistics of a large 
number of model data will be checked to ensure their accordance with the real data. 

Background 

The complex and stochastic nature in modeling solar radiation is well recognized. Most 
researchers have tackled this problem with a stochastic approach. Deterministic approaches are 
relatively scarce in the literature.  

A deterministic approach considers the atmospheric attenuation as an inevitable consequence 
of other known causes. Solar Analyst is one such model. Developed by Rich et al. (1994), this 
model can generate intercepted direct and diffuse radiation from the sky in each direction for a 
specific geographic context. Among the necessary inputs are the digital elevation models 
(DEMs), the atmospheric transmittance and the diffuse proportion of incoming solar radiation. 
The latter two can be acquired by physical measurements or from typical values. Combined, 
they account for the atmospheric attenuation. Goodin et al. (1999) propose a method to 
determine solar irradiance, using the daily air temperature as a reference. A daily transmittance 
coefficient is estimated from the daily temperature range using a Bristow-Campbell (B-C) model. 
The result is suitable for crop growth studies. Deterministic approaches basically make it 
possible to utilize the inherent dependency between the surface solar radiation and other 
prominent factors, such as temperature and atmospheric transmittance. In most cases they are 
used to estimate missing entries in solar irradiance archives.  As the prominent factors are 
difficult to predict, such models are barely capable of forecasting.  

Stochastic approaches study the random components in solar radiation and try to capture the 
statistical meanings. The statistical characters are then used to generate new time series as 
practical predictions. Lu et al. (1998) study the clearness index, i.e. the ratio of measured 
radiation to the clear-sky radiation. In their model, monthly cumulative frequency distributions 
(CFD) are acquired from historical data. Daily indices can be derived from monthly CFD using a 
first order autoregressive equation, where the values of day n and n-1 are related with an 
autocorrelation coefficient and a random term. In the same manner, hourly radiation is 
calculated by disaggregating the daily radiation value (Graham and Hollands, 1990). 

Instead of studying the air transmittance, others examine the on-surface radiation itself. In this 
sub-category, time series analysis is usually the approach of choice to analyze solar radiation 
records. Original data series are decomposed as identifiable seasonal trends of daily mean and 
daily variance, along with a dynamic, unpredictable, random part, usually called noise. Fourier 
transform is found to be broadly used in simulating recognized trends by fitting them with low 
frequency sinusoids. The principal granularity in solar radiation time series study resides in the 
daily or hourly value, which is broken down from the daily sum. Richardson (1981) proposes a 
climate model in which the daily maximum and minimum temperature and solar radiation are 
dependent on the amount of precipitation. To generate these weather variables, the 
precipitation is first generated with a Markov chain-exponential model. The residual series of the 
other three elements are then re-produced with a multivariate generation method. The output 
values of temperature and radiation are obtained by first multiplying the residual by the variance 
and then adding a seasonal mean conditioned by the wet or dry status of the day. Boileau (1983) 
also uses Markov process to produce the residual series of solar radiation. During data analysis, 
he notes that for certain sites, the fluctuations are not symmetrically distributed about the daily 
mean. This asymmetry could not be accommodated with standard procedures which assume a 
Gaussian probability density. Hence a preliminary transformation is necessary to turn the noise 
into a more symmetric state. Brinkworth (1977) divides a year into six equal intervals. He finds 
that, for each interval, the solar radiation segment can be modeled by a linear trend and a daily 

3 



variance. The variance is thus symmetric about the trend and is suitably described by using an 
autocorrelation process with a displacement of one day. Time series analysis is also applied on 
similar natural phenomena. Parrott et al. (1996) present a daily average temperature (DAT) 
model using a Fourier transform approach. For each annual DAT signal, they identify three 
principal sinusoids (0, 1, 2 yr-1 frequency, trend of the seasonal mean) and one beat sinusoid, 
which is equivalent to the trend of seasonal variance. The remaining signal is identified as 
random noise and simulated by 180 higher frequency sinusoids. Model descriptors calculated 
from the parameter of these sinusoidal curves are used to synthesize new sets of annual DAT. 

The Model 

This solar radiation model was constructed based on Parrot’s temperature model (1996). Fifteen 
years’ worth of physical data was acquired for each city and was divided into annual DOR series. 
Individual annual DORs were deemed independent signals and were processed one by one. No 
inter-year correlation was examined. Each original signal was decomposed into seasonal trend 
of mean and variance as well as noise. These three parts were then modeled with various 
sinusoids. During data analysis, we found that this approach was highly dependent on the time 
series in question. To deal with solar radiation, we had to include more steps in order to 
accommodate the asymmetry of noise. The data analysis and model test were completed in 
MATLAB

Data analysis 

Historical solar radiation records for Vancouver, Winnipeg, Montreal and Halifax were acquired 
from the Canadian Meteorology Service. The data were recorded as hourly overall energy, in 
kJ/m2. For each day, hourly values were summed up to obtain the DOR (kJ/m2/d). Identical 
analysis procedure was performed for each of the four Canadian cities, resulting in one 
individual model for each city depicting the statistical characteristics of the local solar radiation 
pattern. At first, the least square method was applied to identify the three principal sinusoids in 
the signal. The three principal sinusoids had low frequencies (0, 1, 2 yr-1) and big magnitudes; 
they represented the seasonal mean trend in annual DORs. This procedure followed the order 
of 1, 2 and 0 yr-1 frequency sinusoids; they were calculated from the signal and were subtracted 
from it in turn. The resulting time series had a mean of zero and displayed a sinusoidal 
magnitude outline.  To standardize the variance, a beat sinusoid describing the absolute 
magnitude was identified from the resulting time series, which was then divided by it (Parrott et 
al. 1996). Again, the beat sinusoid was calculated with the least square method. This gave us a 
new data series which was recognized as random noise. The procedure up to this point is 
illustrated in Figure 2. 

We intended to decompose the noise signal further with higher frequency sinusoids at this stage. 
However, before proceeding, an asymmetry was observed in the signal: there were more 
positive noise values, while the negative noise values came with bigger amplitude in average 
(Figure 3). The asymmetry indicated that applying a Fourier transform directly was inappropriate. 
The Fourier transform would further break down the noise into a spectrum of sinusoids. Being 
symmetric in nature, these sinusoids can hardly retain this asymmetric feature. 

A step we called symmetry transformation was introduced here. This transformation was similar 
to the one that Richardson (1981) suggested to remove periodic means and standard deviations. 
Basically, positive and negative noises were treated separately. As shown in equations (2) and 
(3), the daily mean and standard deviation of positive and negative noises were calculated from 
the 15-year real data. The transformation turned the noise into its residual, for i = 1 ~ 365,  
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Figure 2 Data analysis: Annual DOR signal, three principal sinusoids, beat sinusoid and noise 
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The residual was more symmetric than the noise in terms of closer counts of positive and 
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Figure 3 Noise asymmetry illustrations. (a) Sample one year noise signal. (b) Dissection of 15-

year noise into positive and negative parts. (c) One year residual after transformation. (d) 
Dissection of 15-year residual into positive and negative residuals. 

 

Radiation = a0 + a1 sin(τ+a2) + a3 sin(2τ +a4)      Principal sinusoids       
+ [b0+b1 sin(τ+b2)] × Noise                  Beat Sinusoid × Noise 

       Noise= T-1
sym(Residual, PNOc, pX , pσ , nX , nσ  ) 

                = T-1
sym [ Σ c1i sin(τ × i+c2i) , PNOc, pX , pσ , nX , nσ ] 

0 

182 

Figure 4 The solar radiation model 

The data analysis for one year was completed as discussed. In summary, the annual DOR 
signal was modeled as 187 sinusoids (three principal sinusoids, one beat sinusoid and 183 for 
the residual) plus the asymmetry property. Figure 4 gives a mathematical expression of this 
model where T-1

sym denotes the reverse operation of the symmetry transformation. 

Model descriptors 

The identical procedure was repeated for each of the remaining 14 years. As a result, the nine 
parameters which specified the principal and beat sinusoids each had a sample size of 15: one 
from each year. They were tested to have a normal distribution at a significance level of 0.1. 
Their mean and standard deviation were calculated and became the first 18 elements of the 
model’s descriptor set.  

As for the 183 sinusoids which form the residual, the distribution of their magnitudes was tested 
over the 183 frequencies. 167 out of 183 (91%) were found to bear a normal distribution at a 
significance level of 0.1. The three principal sinusoids and the beat sinusoids were modeled 
individually in complete mathematical form. The residual, on the other hand, was modeled by 
how its magnitude and phase angle change with frequency.  For the magnitude, the mean and 
STD of each of the 183 sinusoids were calculated. Their movement over frequency 0 to 182 yr-1 
is fitted with 5th order, least square polynomials. The phase angle was assumed to be uniformly 
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distributed between π and –π. The asymmetric feature introduced the mean and STD of daily 
positive and negative noises. Likewise, their mean and STD over 365 days were fitted with 5th 
order, least square polynomial lines. Each 5th order polynomial requires six coefficients. They 
totaled 36 coefficients and were also integrated into the model descriptor set (Figure 5). 

 
Figure 5 For Montreal, (a) sample magnitude spectrum for one year’s residual. (b) Sample 
phase angle distribution for one year’s residual. (c) Mean and STD of 15 years’ worth of 

magnitude over frequency 0 ~ 182, and their 5th order polynomial fittings. (d) Mean and STD of 
positive noises and their 5th order polynomial fittings. 

Among the nine parameters, a correlation study found generally strong correlation between two 
sets of parameters for all four cities: (a0 , a1) and (b0 , b1). Their correlation levels were included 
into the model in order to include the inter-variable dependency. We had to include the minimum 
DOR in real data. This number will be used later as a hard constraint during new DOR 
generation. Any generated DOR falling below this limit will be truncated. The maximum limit was 
not taken because the chance of exceeding it was minor. The final number of descriptors is 57. 
This set of descriptors represents the radiation model of interest. With this descriptor set, we are 
able to generate new annual DORs. 

New Annual DORs synthesis 

The model is capable of generating one annual DOR signal at a time. The procedure to 
generate new annual DORs follows a reverse order of the data analysis procedure. At first, 
random parameters were generated with a general form as 

VALUEf = MEANf + STDf × min([max(N(0,1),BOUND1)],BOUND2)         (4) 

where N(0,1) is a random number normally distributed with mean of zero and standard deviation 
of 1. A pair of lower and upper bounds were introduced to prevent eccentric values. For this 
model, (-2.0, 2.0) were chosen as the bounds. After the random parameters were created, we 
started with the calculation of the residual. For each frequency (0 to 182 yr-1), the associated 
magnitude was calculated by obtaining the associated mean and STD from the polynomials, 
then by following the equation (4). Phase angles were generated from a uniform distribution 
between (π, –π). The resulting 183 time-domain sinusoids were then added up to form the 
residual. The next step involved rebuilding the noise from the residual. The asymmetric feature 
was reproduced at this stage. A new PNOc was first created. Next, by assuming that the chance 
of positive noise for a specific day is a uniformly distributed random variable whose value falls 
between (0, 1), a time series of daily positive chance (U (0, 1)) could be generated with a 
random number generator. For each day, noise was assigned as positive if its chance of being 
positive was greater than the new PNOc, and negative otherwise. Following equations (2) or (3), 
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we could compute the noise from the residual conditioned by the sign. The values of mean and 
STD of positive and negative noises were retrieved from the 5th order polynomial fittings. The 
rest of the procedure is identical to that of Parrott’s DAT model and will not be repeated here. 

Test Results 

The goal is to generate annual DORs which are statistically similar to the physical data. To test 
how this goal was met, we conducted a series of tests on the following items:  
1. DOR 

2. Weekly average DOR (WDOR) and monthly average DOR (MDOR) 

3. Difference between DOR for two consecutive days (DDOR) 

4. Histograms of DOR, WDOR, MDOR and DDOR 

5. Statistics from a large number of model generated data 

Figure 6 shows typical annual DOR signals of real data and model generated data. Figure 7 
compares the outputs of 15, one-year model runs with real data in three different granularities 
(daily, weekly and monthly) and the day-to-day differences. Diagrams in the left column 
compare the radiation value in kJ/m2/d. Those on the right give the corresponding histograms 
indicating the relative abundance.  

 
Figure 6 Typical annual DOR from real data and model 

The last stage of tests involved 100 sets of 15, one-year model runs. The results should 
represent a big enough sample of the model outputs to show a good statistical accordance to 
the original set. The 100 sets of 15 annual DORs were fed back to the data analysis procedure 
and resulted in 100 sets of model parameters. We compared the mean and STD of the nine 
major parameters (a0 ~ PNOc). Results for Halifax, Montreal and Vancouver are listed in Table 1. 
Differences for some parameters were observed. Particularly big discrepancies lie in a2’s STD, 
a4 and PNOc for most cities (ratios refer to model statistics over real statistics). Nonetheless, 
their values are not significant compared to other statistics, and differences here should not 
compromise the quality of the model. The possible cause for the difference is that their 
distributions are not perfectly normal. This result is also acceptable considering the small 
sample size of 15 data points per parameter.  
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Figure 7 Model tests of 15, one-year runs, for different granularities 

Conclusion and Discussion 
We proposed a mathematical model for simulating annual daily overall radiation. The model 
contains one set of descriptors for each of the four Canadian cities. The goal is to generate 
reasonable solar radiation values based on model descriptors for future use in an ecosystem 
simulation context. Test results showed the goal was well fulfilled. It is possible to create as 
many annual DORs as required which have similar statistical characteristics to the original data 
set.  

We intended to build up a parsimonious model, which needs the least number of model 
descriptors delivering adequate information. This model needs 57 descriptors, which is 28 more 
than Parrott’s temperature model. Twenty-six descriptors are attributed to the asymmetric 
nature in annual DOR, which appears in all four cities in our study. It is necessary to address 
this problem by looking at the difference of occurrence and magnitude between positive and 
negative noises. The additional 26 descriptors stand for the needed asymmetric property to 
complete the model, which otherwise would produce unrealistic data. For the 15 annual DORs 
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Table 1 Comparison of parameters obtained from real data and 100 sets of 15, one-year model 
runs 
 City Halifax Montreal Vancouver 
Parameter Data Model ratio Data Model ratio Data Model ratio
A0 mean 12262.31 12159.87 0.99 13120.28 13047.04 0.99 12066.49 11872.91 0.98
  STD 527.47 514.79 0.98 456.60 438.18 0.96 469.95 453.44 0.96
A1 mean 8002.97 7657.65 0.96 8829.81 8499.09 0.96 10629.61 9945.18 0.94
  STD 577.38 687.52 1.19 632.28 707.11 1.12 630.47 690.37 1.10
A2 mean -1.44 -1.42 0.98 -1.35 -1.34 0.99 -1.43 -1.40 0.98
  STD 0.05 0.08 1.54 0.06 0.07 1.21 0.08 0.09 1.06
A3 mean 866.24 912.55 1.05 1037.23 1001.96 0.97 792.46 858.22 1.08
  STD 411.36 397.53 0.97 382.06 380.26 1.00 375.53 367.09 0.98
A4 mean -0.12 -0.33 2.77 -0.06 -0.12 1.92 0.68 0.75 1.11
  STD 0.53 0.94 1.78 0.85 1.00 1.17 1.00 1.17 1.17
B0 mean 4940.00 4930.79 1.00 4447.53 4486.40 1.01 4107.73 4190.50 1.02
  STD 216.70 226.55 1.05 185.07 211.92 1.15 237.23 254.52 1.07
B1 mean 2705.70 2752.21 1.02 2295.44 2410.72 1.05 2507.83 2632.97 1.05
  STD 184.80 232.57 1.26 208.39 241.37 1.16 374.01 314.12 0.84
B2 mean -1.25 0.00 0.00 -1.14 0.00 0.00 -1.26 0.00 0.00
  STD 0.10 0.00 0.00 0.10 0.00 0.00 0.09 0.00 0.00
PNOc mean 0.53 0.53 1.01 0.55 0.55 1.01 0.53 0.53 1.00
  STD 0.02 0.02 1.19 0.01 0.02 1.50 0.02 0.02 1.37

 

being described with 57 descriptors, the compression rate is about 1% (365×15/57=0.0104).  

The output of daily overall energy is useful for ecosystem simulations. From DOR, we could also 
derive solar intensity at a finer interval, such as every 10 minutes. With interpolation, solar 
intensity for any time of day becomes available through simple program routines. This is actually 
what this solar radiation model does in the ecosystem simulation stated at the outset. The result 
has been satisfactory in terms of the values generated and the speed of model execution.  
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