
 
 

         Paper No. 05-041 
 

INTELLIGENT COMPUTER VISION SYSTEM (SAIF) FOR 

AUTOMATED INSPECTION OF GINSENG ROOTS QUALITY 

A. I. Martynenko 

School of Engineering, University of Guelph 

Guelph ON, N1G 2W1 e-mail: omartyne@uoguelph.ca 
 

V.J. Davidson 

School of Engineering, University of Guelph 

Guelph ON, N1G 2W1 e-mail: vdavidso@uoguelph.ca 

 

R. B. Brown 

School of Engineering, University of Guelph 

Guelph ON, N1G 2W1 e-mail: rbbrown@uoguelph.ca 
 

Written for presentation at the 
CSAE/SCGR  2005 Meeting 
Winnipeg, Manitoba 
June 26 - 29, 2005 

 



 

Abstract 

Intelligent computer-vision system for automated inspection of food safety and quality 

(SAIF) developed on the basis of compact CCD camera with IEEE-1396 interface and 

configurable software (IMAQ
TM
6.1, Lab VIEW 7.0) is presented. It offers an extensive set 

of optimized functions for advanced image acquisition, segmentation, feature extraction, 

data analysis, spatial measurement and calibration. It also includes the ability to set up 

complex pass/fail decisions in order to control digital I/O devices such as PLC. The system 

application for online inspection of ginseng root quality during drying was developed. Area 

shrinkage was continuously monitored through computer-vision system by extracting 

morphological features with thresholding and pixels counting. Colour changes were 

monitored through computer-vision system as surface color intensity. Relationships 

between image attributes and physical parameters of drying (shrinkage/moisture, 

color/quality) were used for online estimation of actual moisture content and quality 

degradation. Testing of system proved accuracy in estimation of ginseng quality and 

process parameters in multi-stage drying. The feasibility of SAIF as system observer for 

closed-loop control is discussed. 

Keywords: ginseng, shrinkage, colour, texture, quality, machine-vision, inspection, 

control. 

 

 

 

 



1. Introduction 

The use of computer vision for automated food inspection keeps on growing (Batchelor 

et al.,1985, Zuech, 1990, Gunasekaran, 2000, Lu, Wen, 2000, Sun, 2000). Quantification of 

morphological, colour and textural features enabled to develop advanced algorithms for 

classification of grain (Majumdar & Jayas, 2000a-d; Paliwal et al., 2001), fruits (Leemans 

et al, 2002; Blasco et al., 2003) and vegetables (Tao et al., 1990; Nilsen et al., 1998). 

Recent advances in multi-layer neural networks essentially improved performance of 

computer-vision classifiers (Jayas et al., 2000; Paliwal et al., 2003). However, because of 

features correlation, it can decline the performance of the classifier (Mujumdar & Jayas, 

2000d). Selection the minimal set of non-correlated features, sufficient for discrimination 

of object/process attributes in informational space, is one of the most important elements of 

image analysis (Klir, 1985). It requires careful image pre-processing: segmentation, pixel 

clustering, and optimal thresholding (DaFontoura & Marcondes, 2001), combined with 

advanced data analysis (Blasco et al, 2003) or pattern classification (Jayas et al., 2000). 

Computer vision offers a tremendous resolution for monitoring of spatial and temporal 

changes in food processing (Fernandez et al., 2005). However, the gap between image 

attributes and physical parameters (moisture, quality, temperature) essentially limits 

applications of computer vision for industrial purposes. 

The objective of this study was automated inspection of ginseng root quality, which is 

the critical issue in ginseng root drying (Davidson et al., 2004). Ginseng quality was 

specified as desirable color, texture and moisture content (Grade and Quality Standards of 

Products of Processed American ginseng, 1998). To achieve the objective, the procedures 

of image segmentation, feature extraction and data analysis were developed. Relationships 

between image attributes and physical parameters of drying (moisture and quality) were 

established. 

 



2. Materials and methods 

2.1. Drying chamber 

Experiments were carried out in a specially designed drying chamber (Figure 1). For 

automated inspection of visual color and area changes during drying the chamber was made 

up of a 300 mm length of Plexiglas tube with an inside diameter of 120 mm. It was 

connected to an air conditioning unit that produced constant airflow with regulated 

temperature and humidity. Temperatures of air and root surface were measured with 

identical T-type thermocouples with a spherical junction 0.85mm in diameter. 

 

Figure 1. Experimental drying chamber with computer-vision system 

For measurement of temperatures inside of the root hypodermic Teflon-insulated 

microprobes 0.65mm in diameter were used. Measurements with the thermocouples were 

made using an interface card
1 
with built in cold-junction compensation in the control 

computer. Based on the calibration, absolute error associated with the thermocouple 

measurements was ±0.1oC and the relative error between measurements was ±0.05oC. 

                                                 
1
  Model PCI-20303T, Intelligent Instrumentation Inc., Tucson, Arizona 85706, USA 



Air relative humidity was measured using a humidity sensor
2
 with a sensitivity of 

25mV/% RH and an accuracy of 2%. Airflow rate was measured with an anemometer3 with 

an accuracy of 5%. Root weight was measured continuously with a digital balance with a 

serial interface to the control computer. Data from the thermocouples, humidity sensors and 

the digital balance were recorded continuously by National Instruments’ Lab VIEW 7.0
TM
 

through a data acquisition interface card
4
. 

2.2. Samples 

The ginseng root samples used in this study was obtained from Hare Farms (Waterford, 

Ontario) in October 2003 and October 2004. Both harvests were taken from four-year 

ginseng plots. Ginseng population contained roots of different shapes and sizes in the range 

from 4 to 40mm in diameter. Fresh ginseng roots were stored in a refrigerator at 5±2
o
C 

during the experimental study period (3 months). Prior to each drying experiment, roots 

were washed and care was taken to drain the roots and remove wash water. 

2.3. Computer vision system 

The hardware consisted of a portable compact CCD camera
5
 with built-in 4.65 mm 

lens with anti-reflective coating connected to a personal computer (P4, 2.4GGz) using PCI 

IEEE-1394 FireWire adapter6. The software consisted of NI-IMAQ data acquisition driver 

for IEEE-1394, LabVIEW 7.0 and IMAQ6.1
TM
 Vision Builder

7
. Camera and data 

acquisition interface were configured with NI-MAX (Measurement and Automation 

Explorer). Digital camera was mounted in on a vertical stand, which provided easy vertical 

movement and stable support for the camera. The depth of field was enough to obtain 

quality images with a high contrast of boundaries and high color resolution. The image 

                                                 
2  Model HIH-3602C, Honeywell Inc., 101 Columbia Road Morristown, NJ 07962 USA 
3
 Davis Instruments Corp., 3465 Diablo Ave., Hayward, CA 94545, USA 
4 Model NI PCI-6220, National Instruments, Austin, Texas, USA 
5
 Model Fire-i, Unibrain Inc., P.O. Box 203730 Austin, Texas 78720-3730, USA 
6
 Model FWPCI-3 PCI IEEE-1394 OHCI adapter, Unibrain Inc., USA 
7
 National Instruments, Austin, Texas, USA 



resolution was 0.1 mm/pixel and 0.08 mm/pixel in the horizontal and vertical directions, 

respectively. 24-bit RGB-images were converted to square pixels with the resolution 

0.01mm
2
/pixel. Uniform illumination was provided with SYLVANIA CF15EL/830 diffuse 

fluorescent bulbs with corrected color temperature of 4200
o
K and a color reproduction 

index near to 95%. Image capturing, processing and subsequent analysis were performed 

online using LabVIEW graphical interface. 

2.4. Image analysis 

Image analysis included image segmentation, features extraction and data analysis. 

Image segmentation was designed to separate region of interest (ROI) from background. 

Extraction of morphological, colour and textural features was provided every hour with the 

library of virtual instruments, embedded in NI-IMAQ6.1 Visual Builder. Image features, 

determined as time-dependent variables, were used further in data analysis to calculate 

physical (moisture and quality) and rate (drying rate, quality degradation) parameters of 

drying. 

2.4.1. Image Segmentation 

The first step of image analysis was image segmentation. This algorithm, based on 

edge detection, operated by finding the optimal threshold that minimizes the entropy of the 

fuzziness measure
8
. For ginseng root it was found that the red channel of RGB colour space 

provided the best discrimination between reflectance properties of ginseng surface and 

background. The output [0,256] gray image was converted then into binary [0,1] image 

with 1s assigned to ginseng root and 0s assigned to background. This binary image was 

used for two purposes: a) estimation of morphological features and b) masking original 

color image for extraction of color and textural features. Multiplication of original image 

                                                 
8
 This procedure was found more consistent than automatic thresholding technique (Parker, 1994) or 

truncation of “dark” intensity pixels below 50 (Fernandez et al., 2005) 



on its binary mask enabled to convert all background pixels to zero intensity pixels and 

eliminate this class from next calculations. 

The block-scheme of image segmentation procedure is shown in Figure 2. 

 

Figure 2. Image segmentation procedure 

Original color image was filtered twice: in RGB colour space to extract morphological 

features and in HSI (hue-saturation-intensity) colour space to extract colour features. 

2.4.2. Feature Extraction 

Morphological features: 

The software library enabled to extract all morphological features: surface area, length, 

width, radius, shape factor and their statistical (mean and variance) characteristics. 

However, not all of them were used in the next data analysis. Length-to-width ratio was 

used for identification of root orientation in XOZ plane. Surface area was used for 

identification of moisture content (Davidson et al., 2004). To distinguish root area from 

isolated small clusters of pixels, the procedure of multi-threshold filtering with next particle 

analysis was applied. Root area was determined as the largest object on the binary image. 

Overall surface area was obtained by conversion of “1”pixels of binary image into area 

through conversion coefficient 0.01mm
2
/pixel with the next multiplication on π (cylindrical 

root geometry). 

Colour features: 



Color features were extracted as means and variances of red (R), green (G) and blue 

(B) channels in RGB colour space and color intensity (I) in HSI colour space. To avoid 

effects of size sampling on colour intensity distribution, the number of pixels for each 

intensity line was normalized with respect to overall number of pixels in extracted area. 

The histogram of color intensity was treated as a fuzzy variable with lightness as a support. 

Average color intensity was calculated from color intensity histogram on the basis of 

center-of-gravity defuzzification (Jang et al., 1997). Means and variances were used to test 

statistical hypothesis (F-test) about color changes on each interval of observation. 

Textural features: 

Texture recognition was carried out by means of co-occurrence matrix (COM) (Mujumdar 

& Jayas, 2000c). The pattern of intensity pixels in XOZ image plane was characterized with 

non-uniform distribution in radial (X) and axial (Z) directions. Hence, ginseng root texture was 

calculated as a geometry-related feature in two directions: across root (radial profile) and along 

root (axial profile) by using methods of statistical identification, such as autocorrelation Rxx(τ), 

Rzz(τ), and spectral power density Sxx(ω), Szz(ω) functions. Spectral power density was 

calculated by using FFT for one-dimensional colour intensity profile the same way as a two-

dimensional co-occurrence matrix (Paliwal et al., 2003, Fernandez et al., 2005). Spectral 

power density enables to get information not only about homogeneity of pixels distribution, but 

also about some periodical attributes of ginseng surface, such as surface wrinkling. First peak 

of spectral power density was used to measure textural uniformity. Second peak and higher 

harmonics of spectral power characterized development of regular wrinkles on the root surface. 

Energy was calculated as an integral of spectral power density: 

∫∫∫∫====
ωωωω

ωωωωωωωω
0

)( dSE     (1) 

where ω (pixels
-1
) was reciprocal to the distance between pixels. Calculated energy was a 

measure of textural uniformity and decreased dramatically during drying. 



The flow chart of feature extraction is shown in Figure 3. 

 

Figure 3. Flow chart of feature extraction 



2.4.3. Data analysis 

Data analysis was provided to relate the set of morphological, colour and textural 

features with the set of physical parameters of ginseng root quality. In informational space 

the object system appears as a set of attributes, each associated with a set of appearances, 

and a set of domains, each associated with a set of its elements (Klir, 1985). It can be 

expressed as: 

})),({},),(({
,...2,1,..2,1 mj

jjniii BbAaO
========

====   (2) 

where ai, Ai denote an attribute and a set of its appearances, respectively, 

bj, Bj denote a domains and a set of its elements. 

Three important attributes of ginseng root quality {a1, a2, a3} are moisture, quality and 

wrinkles (Grade and Quality Standards of Products of Processed American ginseng, 1998). 

Two important domains {b1,b2} are time and moisture content. Observation channel is the 

operation oi, by which a specific variable is appeared as an image of an attribute ai in a set 

of appearances Ai: 

iii Aao →→→→:     (3) 

Relationship between image attributes, measured on the time basis, and physical 

parameters are shown in Figure 4. 

 

Figure 4. Relationships between image attributes, measured on the time basis, 

physical parameters and processes. 



Three channels of observation were independent, delivering information about 

morphological, color and textural image attributes of object system. The accuracy of the 

computer vision system was evaluated as errors in area, colour and texture estimation. The 

error in area estimation due to isolated or small clusters of pixels, mainly located at the 

boundaries of adjacent regions was evaluated by comparison of binary images, obtained 

with original low-resolution (640x480) portable CCD camera and reference high-resolution 

(1392x1040) CCD camera9 with a automatic adjustment of white balance and 25mm F/1.4 

Mega Pixel Iris
10
 lens. 

The error in colour estimation was evaluated by comparing standard colour indices 

from bright yellowish to beige, corresponding to colour of ginseng roots. These indices 

were calculated in XYZ colour space, provided by standard colourimeter
11
. To avoid 

possible effects of non-uniform lighting, each sample was imaged three times for different 

angle orientation of roots (0, 120
o
, 240

o
) in the plane of measurement. The colour was 

calculated as the average of three measurements. 

The error in texture estimation was evaluated by using of set of samples with calibrated 

grids of different sizes. Performance in estimation of periodical components was estimated as 

a signal-to-noise ratio in power spectrum density function, calculated with FFT. 

All experiments were carried out with three replications in a random order to exclude the 

influence of uncontrolled changes during storage, including ageing and moisture loss. The 

correlations between morphological, color and textural features were tested with cross-

correlation analysis (SAS6.0). Significance of features and their interactions was tested by 

standard ANOVA procedures. Adequacy of linear relationships between image attributes and 

physical parameters was tested on the basis of Fisher criteria with 0.95-confidence level. 

 

                                                 
9
 Model DFW-SX900, Sony Corporation, Japan 
10
 Model 23FM25SP, Tamron USA Inc., 10 Austin Blvd., Commack, NY 11725, USA 

11
 Minolta CR-300, Japan 



3. Results and Discussion 

3.1. Image segmentation 

An example of image segmentation is presented in Figure 5. Original image of ginseng 

root with background noise, obtained with CCD color camera (Fig. 5a) was filtered in red 

with thresholding to obtain raw binary image (not shown). Subsequent cluster analysis was 

provided to select the region of interest (ROI) as the largest cluster in the image and 

eliminate small clusters, not belonging to ROI. Corrected binary image (Fig. 5b) was used 

as the mask to obtain original colour image with ideal (0s) background (Fig. 5c). 

 

 

a) 

 

 

 

 

b) 

 

 

 

 

c) 

 

 

 

Figure 5. Image segmentation: a) original colour image of 20mm ginseng root, b) binary 

image after correction, c) original colour image after masking 



3.2. Morphological features (shrinkage) 

Surface area of the root was calculated from binary image (Fig. 5b) by conversion of 

pixels into area through multiplication on conversion coefficient 0.01 mm2/pixel. Structural 

changes in ginseng root during drying were accompanied by volumetric shrinkage and a 

decrease in projected area. Area shrinkage ξ(t) was calculated as dimensionless time-

dependent variable, indicating shrinkage of surface area with time of drying. Taking into 

account surface area at equilibrium Ae the shrinkage is: 

eo

ei

i
AA

AA

−−−−

−−−−
====ξξξξ      (4) 

Area shrinkage of ginseng root (Figure 5) during 100 hours of drying at temperature 

38
o
C, relative humidity 12% and airflow rate 1m/s is presented in Figure 6a. 

 

 

 

 

 

 

 

 

 

 

Figure 6a. Kinetics of area shrinkage in drying process (circles – points of 

observation, solid line – exponential fit) 

Kinetics of shrinkage followed exponential behaviour in all experiments over the 

range of experimental conditions from 38oC to 50oC of temperatures, from 12 to 25% of 
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relative humidity and air velocity from 1m/s to 3m/s. In time domain it could be expressed 

as an exponential model: 

tkSt
−−−−==== exp)(ξξξξ      (4) 

This exponential behaviour of area shrinkage during drying was in a good agreement 

with previous results (Li, 2002). Coefficient of determination (0.995) of exponential model 

reflected accuracy of image analysis for surface area estimation. 

Area shrinkage, plotted in moisture domain, showed linear behaviour (Figure 6b). 

This linear relationship between dimensionless values of area shrinkage and moisture 

ξξξξψψψψ a====      (5) 

was valid for the most period of drying (R2=0.97, standard error 0.016). 

 

 

 

 

 

 

 

 

 

 

Figure 6b. Relationship between area shrinkage and moisture ratio 

This correlation between shrinkage and moisture content in the range of moisture 

from initial to 0.3g/g (db) can be related to phenomenon of free water evaporation (Ratti, 

1994). However, below 0.3g/g area shrinkage cannot be used as the predictor of moisture 

losses. 
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3.3. Color features (color intensity) 

Color intensity was extracted as a mean value of histogram of colour intensity 

distribution in HSI colour space (see section 2.4.2). Kinetics of colour changes in time and 

moisture domains are presented in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Color changes of ginseng root at 50
o
C temperature, 1m/s air velocity and 12% 

of relative humidity: a) in time domain; b) in moisture domain. 
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The most significant colour changes occurred between 30 and 50 hours of drying, 

starting at 0.5 and ending at 0.2 of moisture content. In moisture domain the variation 

between experiments was minimal. It follows that color intensity was moisture dependent, 

decreasing dramatically at the range of (0.5-0.2) of moisture content. This range of water 

activities corresponds to the maximal rate of Maillard reaction of non-enzymatic browning. 

Color changes measured by image analysis and standard colorimeter (Minolta CR-300) 

gave high average correlation with R2=0.95. These results were similar to those, reported for 

chromatic parameters “a” and “b” in Lab colour space, reported by Krokida et al. (2001) and 

Fernandez et al. (2005). It follows that color intensity can be used for monitoring of quality 

degradation in ginseng drying. 

3.4. Textural features 

Textural features of ginseng root surface were measured from colour intensity profile, 

which was computed separately for R, G and B color plane. Taking into account non-uniform 

texture of ginseng root in axial and radial directions, colour intensities were scanned in both 

longitudinal (z) and transverse (x) spatial coordinates on XOZ image plane. 

Spatial distribution of colour intensities of fresh and dry roots in longitudinal direction 

(along root surface) is shown on Figure 8. There was significant anisotropy of textural 

features, which can be related to structural organization of ginseng root (for fresh root) and 

non-uniform longitudinal and radial shrinkage (for dry root). 

Color profile of fresh root (Figure 8a) was characterized with saturation of red (255), 

high level of green (250±5), and average level of blue (140±10). Figure 8a shows uniform 

texture of fresh root surface with constant color distribution along the root. Textural non-

regularities on longitudinal profile were not identifiable. 

Color profile of dry root (Figure 8b) reflected more textural non-regularities of root 

after drying with local irregularities about 30-40pixels of size. They become observable at 0.5 



of moisture content and were associated with wrinkles, which appeared on the root surface as 

the result of critical root shrinkage. These textural features were best identifiable from colour 

intensity profile in blue plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Textural profile of fresh (a) and dry (b) ginseng root (longitudinal scan) 

From Figure 8 follows that drying causes substantial decreasing of mean values of 

colour intensities: red from 255 to 225; green from 250 to 200 and blue from 145 to 25. The 

most significant changes occur in blue color plane. A local irregularity with a random 

distribution appears at some point of drying as the result of surface shrinkage. The variability 

of color intensity profile was increased from red to blue.  
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Spatial distribution of colour intensities of fresh and dry roots in transverse direction 

(across root surface) is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Textural profile of fresh (a) and dry (b) ginseng root (transverse scan) 

Figure 9a shows uniform texture of fresh root. R, G and B color intensities were 

maximal in the center, decreasing on the root boundaries. This effect was related to root size 

and caused by non-uniform illumination of cylindrical root body with remote source of 

illumination. The magnitude of color changes was maximal in blue, being sensitive to local 

textural irregularities. 
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The higher harmonics, appearing on the root image after 20h of drying (Figure 9b), are 

the result of surface structural changes (wrinkling). These wrinkles with characteristical size 

10 pixels (~1mm) are important attribute of root quality. 

Textural features were quantified as spectral power density (measure of textural 

uniformity). Each textural feature was computed separately for R, G and B intensity plane as 

a function of a distance between pixels. Calculated values of spectral power density were 

normalized and presented on Figure 10 in spatial (frequency) and time domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Spectral power density as a function of spatial frequency (FFT) for fresh 

(green) and dry (red) roots; b) Image energy vs time of drying 
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From Figure 10a it follows that fresh root does not have any high-frequency 

components, they appears in the process of shrinkage. For dried root there was a large 

spectral component, corresponding to frequency 0.1 pixel
-1
. It can be related to wrinkles on 

the surface with the typical distance 10 pixels (0.1mm) between them. 

It follows that textural feature analysis gives two pieces of information: about spectral 

power density with respect to spatial coordinate and about energy decay with time of drying. 

In general, decreasing of energy with time of ginseng drying is in good correspondence with 

results reported for apple disks drying (Fernandez et al., 2005). 

 

4. Evaluation of SAIF performance for feedback control 

Intelligent computer-vision system for automated inspection of food safety and 

quality (SAIF) was developed as re-configurable machine-vision software for monitoring, 

identification and control applications on the basis of NI-IMAQ Vision Builder 6.1. SAIF 

was tested as a part of knowledge-based control system. It offers an extensive set of 

optimized functions for advanced image processing, machine vision, pattern matching, blob 

analysis, spatial measurements and calibration of food products. Also it includes the ability 

to set up complex pass/fail decisions in order to control digital I/O devices such as PLC. 

Performance of SAIF was tested in industrial conditions on ginseng batch dryer. 

Output of computer-vision system delivered information about area, colour and texture of 

ginseng in the batch. Subsequent image processing was done with IMAQ Histogram VI, 

using a procedure of centre-of-gravity averaging. Information about area changes in the 

process of drying was used for calculation of shrinkage kinetics and next conversion into 

moisture kinetics with model (equation 5). Both moisture estimate m(t) and error em(t) were 

used as dynamic variables in global control loop. Global control loop with computer-vision 

input provided observability of technological process of ginseng drying due to advanced 



image processing and analysis. Colour degradation was estimated as an independent 

dynamic variable with another model (see Figure 7). This estimate was used in global 

control loop to prevent quality degradation below specified threshold. Ginseng quality was 

estimated on the basis of all available information. Errors for estimation of moisture 

content me , quality qe  and drying rate ke  were calculated as discrepancy between 

estimation from observer and direct measurements.  

Additionally, the user-friendly graphical interface with operator was developed. 

Operator was able to specify drying conditions (temperatures for each stage of drying, 

relative humidity, air velocity, size), initial, equilibrium and critical moisture contents, as 

well as the rate of image sampling. Online estimates of shrinkage, colour and moisture 

content on each stage of drying were displayed online on the screen. The quality of ginseng 

in drying process was indicated as “EXCELLENT”, “HIGH”, “SATISFACTORY” or 

“NON_SATISFACTORY”. If error in quality assessment was within allowable threshold, 

then “DRYING IN PROGRESS” was displayed. Otherwise it was displayed 

“CORRECTION” and correction of drying regime was required. 

 

5. Conclusions  

Experimental testing of computer vision system (SAIF) for ginseng drying showed 

advantages of SAIF for online monitoring of important state variables, such as moisture, 

colour and texture. Moisture was identified from morphological attributes (area), using 

relationship between area shrinkage and volumetric moisture content with 8% error and 95% 

confidence. Color was identified as color intensity in HSI colour space. Wrinkles were 

identified from spectral analysis as the result of FFT with following filtering of spectral 

harmonics. SAIF was also used for automated inspection of final product quality. 



Our research results demonstrated the feasibility of SAIF as an accurate online 

observer for a closed-loop food processing. Data extracted from image analysis represent 

both quality factors perceived by consumers (color, texture) and process parameters (moisture 

content, drying rate), important for control purposes. 
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