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Abstract: An artificial landmark-based, automatic navigation system was developed for 
a small-scale field robot. Several low-cost sensing techniques were involved in the 
system to detect surroundings and determine the position of the moving robot.  Several 
tests were conducted to evaluate the accuracy of linear distance and angular 
displacement using dead-reckoning with a gyro-correction, overall performance of the 
gyroscope used, and effectiveness of an artificial-landmark-based automatic navigation. 
The accuracy of the position determination methods based on dead-reckoning only, 
dead-reckoning with a gyro-correction, and laser-range-finder (LRF)-based methods was 
tested, analyzed, and compared, respectively. The results of the automatic navigation 
tests showed that LRF-based position estimation was much more accurate when 
compared to the dead-reckoning and dead-reckoning with gyroscope correction 
approaches. It had the ability to navigate the testing robot with a high accuracy.  
 
 
Key words: Automatic Navigation System, Laser Range Finder, Kalman Filter, Sonar, Dead-
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INTRODUCTION 
 
The concept of the automatic guidance of agricultural vehicles dates back to the early fifties and 
sixties when leader cable guidance systems were used (Morgan, 1958). As time progressed, 
various sensing methods for vehicle positioning have been developed. These methods can be 
placed into two main categories, namely ground-based and satellite-based. Sensors can also be 
classified in various categories such as motion measurements (odometry and inertial), artificial 
landmarks (laser and radar), and localisation (sonar sensors and CCD cameras). Ground-based 
navigational methods can be further subdivided into two schemes, a Cartesian map-based and a 
relative sensor-based method. A map-based method requires a 2D or 3D model of its operating 
environment in conjunction with a dead reckoning and motion control system with real time 
localisation capabilities. A sensor-based navigation method is required to convert 3D structural 
data into sufficient guidance commands. 
 
Dead-reckoning is a simple technique employed by mobile robots for localization, that integrates 
the rotation and translation of the contact wheel(s) to calculate the robot’s Cartesian coordinates. 
This method, however, is unreliable because of the accumulation of errors over time as 
mentioned earlier, thus many researchers believe it is unsuitable for real world applications. 
However, Yamauchi (1996) claimed that although dead reckoning is insufficiently precise for 
low-level navigation, it provides general information with respect to the robot’s position. The 
author applied the concept of evidence grid (a region in space divided into Cartesian grid) on a 
Nomad 200 robot (Nomadic Technologies, California, USA) to compensate for errors arriving 
from dead reckoning due to slip. The results indicated that this technique produced more accurate 
position estimation. One major advantage of this method was that it withstood transient changes, 
such as people walking past the robot and rearrangement of obstacles. 
 
Gyroscopes and accelerometers are two types of inertial sensors that can be used as an alternative 
for vehicle positioning as oppose to wheel encoders for dead reckoning. They have been used in 
various vehicle applications (Schonberg et al., 1996). There are three main types of gyroscopes, 
spinning mass gyros, optical gyros, and vibrating gyros. Spinning mass gyros typically has a 
mass spinning steadily with a free moveable axis (gimbal). When the gyroscope is tilted, it causes 
precession, which is the motion orthogonal to the direction of the tilt sensed on the rotating mass 
axis, so that the angle moved is obtained. In an optical gyroscope, a laser ray is reflected 
continuously within an enclosure. The enclosure is allowed to rotate and the duration between the 
time of laser emittance to reception is calculated. Fibre-Optic gyroscope (FOG) is an example of 
an optical gyroscope that uses a coil of optical fibre. Vibrating gyroscopes, on the other hand, 
consist of a vibrating element (vibrating resonator chip) that uses the Coriolis effect of the sensor 
element to sense the speed of rotation. The vibrating element causes secondary vibration 
orthogonal to the original vibrating direction. The rate of turn is related to the secondary 
vibration. In Japan, an automated six-row rice transplanter was developed using RTK-GPS for 
precise positioning and FOG sensors to measure direction (Nagasaka et al, 2004). The RTK-GPS 
achieved 2 cm precision at 10 Hz data output rate, and the FOG sensors were used to maintain the 
transplanter inclination. The inclination of the transplanter due to changes in terrain affected the 
position of the machine, but was corrected using the FOG sensor data. FOG drift was 
compensated by comparing the lateral direction deviation calculated using the yaw angle and the 
machine speed with the deviation calculated from the GPS data. An autonomous mobile robot 



 

(AMR) navigation system using a differential encoder and a gyroscope was developed by Park et 
al (1997). They used an AUTOGYRO (FOG) on a lab-scale mobile robot. Their experimental 
results demonstrated that the position of the robot was much more precise by combining the 
encoder and gyroscope readings. The systematic errors arising from the differential encoder and 
the stochastic errors from the gyroscope were modeled in the navigation filter. An indirect 
Kalman filter was used instead of an extended Kalman filter, since the indirect method estimated 
both the errors from the encoder and gyroscope, and by augmenting both of these errors the filter 
was able to correct them both. 

 
A landmark is localized physical feature that a robot can sense and use to estimate its own 
position in relation to a known map or a reference frame. The landmark-based navigation is based 
on detection and recognition of these features in a robot’s environment in order to navigate the 
robot to a specific location. These features can be defined using natural or artificial landmarks. 
They can also be generated from a known map or geometric models. Natural landmarks are 
flexible, easy to use and cheap. However, it is often sparse and unstable. Artificial landmarks can 
be predefined and this tends to reduce the complexity of the localization algorithms. Both natural 
and artificial landmark-based localization require high performance sensors to accurately detect 
them. Landmarks can be detected using several sensing mechanisms, including mechanical 
sensors, sonar sensors, laser scanners, radar, and CCD cameras. However, these sensing methods 
have their pros and cons. Mechanical sensors were one of the first types of sensors used to detect 
plant rows, soil furrows, and artificial landmarks such as rails and buried cables, to navigate 
agricultural field machines. This is a cheap method but accuracy and reliability was very poor. 
Laser scanners and sonar sensors are also relatively cheap and easy to implement, but they suffer 
from noise interference, beam spreading and scattering. However, localization using laser 
scanners to identify artificial landmarks is a promising absolute technique in terms of 
performance and cost. This technology usually involves the measurement of the bearing of 
artificial landmarks relative to each other.  The position of a robot can be computed using two 
distinctive techniques: triangulation and Kalman filtering algorithm (Skewis and Lumesly, 1994; 
Durrant-Whyte, 1996). Visual detection of landmarks using cameras is a rapidly advancing 
technique (Mata et al, 2003; Hayet et al, 2003; Sala et al, 2004) due to its accuracy and reliability. 
Visual recognition is the problem of determining the position and orientation of a physical 
landmark from an image projection of that landmark. This problem poses lots of challenges in 
real life because of uncontrolled illumination, distances, and view angles to the landmarks, as 
well as requirement for resources to store and process the image data. The visual detection of 
landmarks has been based on several fundamental concepts, such as the detection and extraction 
of contour segmentation, 2D line segmentation, vertical lines, intersecting lines, edges, and 
vanishing points.   
 
In practice, cheap and reliable sensing methods are the preferred way. But there is often a trade-
off between costs and accuracy. Dead reckoning is unreliable and results in accumulated error 
over long period of time. The fusion of two or more sensors to predict position and orientation of 
a mobile robot is also common, but this method requires complex algorithms and models to 
represent the errors created by the sensors.  Localization using artificial or natural landmarks is a 
common technique because of its simplicity, low cost and reliability.  
 



 

The primary objective of this study was to develop a landmark localisation technique based on a 
LRF and artificial landmarks, and to develop an algorithm to improve position estimation for 
navigational purposes. The specific aims included: 

• To test the linear and angular displacement accuracy of the robot using the onboard 
gyroscope and wheel encoders. 

• To test the effectiveness of the combination of the gyroscope and dead reckoning 
measurements using a Kalman filter algorithm in compensating errors due to slip.  

• And finally, to develop a landmark localisation technique using a LRF and artificial 
landmarks, and to compare it against the inertial measurement method  

 
 

MATERIALS AND METHODS 
 
HARDWARE DESCRIPTION 
 
The Robot Platform 
The automatic navigation system was developed for a Pioneer 3 All Terrain (P3-AT) robot 
(ActivMedia Robotics, New Hampshire, USA). The robot was equipped with two internal 
sensors, namely a gyroscope chip (ADXRS300, Analog Devices, Massachusetts, USA) and two 
wheel encoders used for dead reckoning. Two external sensors included a LRF (SICK LMS200, 
Waldkirch, Germany) and a ring of eight sonar sensors. The body of the robot was made of 
aluminium with dimensions of 50cm(L)×49cm(W)×26cm(H) and a body clearance of 8 cm. The 
total weight was 12 kg including three 12 V batteries. It was four-wheel driven (21.5 cm diameter 
drive wheels), employing a skid steering approach for turning. The wheel motors used a 66:1 gear 
ratios and contained two 100-ticks wheel encoders. The maximum translational speed that could 
be achieved was 1.2 m/s and the maximum traversable slope was 40 % grade.  
 
The P3-AT robot was also equipped with an 850 MHz single-board computer (VSBC8, 
VersaLogic Corporation, Oregon, USA), and an 18 MHz microcontroller (H8S/237, Hitachi, 
Japan). The microcontroller managed all the low-level details of the robot’s control and 
operation, including motion, heading and odometry.  The single-board computer was used to 
acquire and process LRF data in real-time and implement the automatic navigation algorithms.  
 
Internal Positioning Sensors 
The gyroscope (ADXRS300, Analog Devices, Massachusetts, USA) used was an angular rate 
sensor built using proprietary MEMS®surface micromachining process by Analog Devices. It 
had a dynamic range of ±300 °/sec and a sensitivity of 5 mV/º/sec. The bandwidth was 0.04 kHz 
and the temperature range was -40°C to 85 °C. The power supply and current requirement were 
4.75 V and 6 mA respectively.   
 
The purpose of the gyroscope was to compensate for large errors due to wheel slip, lost of wheel 
contact on the ground, and other factors like skid steering and gearbox play. The gyroscope was 
connected to an analog to digital input port on the microcontroller. Gyroscope measurements 
were of 10 bit integers of value 0-1023. When the robot was stationary the measurement was 
centered around 512. Measurements less than 512 represented counter-clockwise direction and 
measurements above 512 represented clockwise direction. The measurements were dependant on 



 

the gyroscope’s temperature and drift. In the event of drift, the gyro auto calibrated itself to the 
centre range of 512 if the robot was stationary for one second. A stationary position meant the 
rotational and translational velocities were less than 1 °/sec and 1 mm/sec respectively for a 
period of 1 second. Another condition for auto calibration to take place was that the gyro’s 
current reading must be within 0.5% of the average readings. 
 
The P3-AT robot had four wheel motors and two wheel encoders. The two left-wheel and two 
right-wheels were mechanically coupled (with a belt) respectively, thus the encoders produce two 
distinct speeds, one for the left pair and the other for the right pair. The dead reckoning concept 
used consisted of simple geometric equations using odometric data to calculate the position of the 
robot in comparison to its starting point. The dead reckoning concept is shown below: 

 
Figure 1. Dead Reckoning Concept 

 
Figure 1 shows the robot after undergoing a translational and rotational movement. X2-Y2 was 
considered as a global coordinate frame and X1-Y1 as a local coordinate frames of the robot. Vl 
and Vr represented the left and right encoder velocities respectively, whilst Vt was the total 
translational velocity.  The robot’s heading was represented as an angle θ , with an angular 
velocity asθ& . Vt was resolved into two components of velocity, a horizontal and vertical 
components. The Cartesian coordinates of displacement was obtained by an integration of the 
horizontal and vertical components of translational velocity over time. The distance measurement 
was computed using equations 1 to 5. 
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X1-Y1: Local coordinate frame 
X2-Y2: Global coordinate frame 



 

                                             
Where: 

Vl – left encoder velocity    Vr – right encoder velocity 
L – distance between left and right encoder  θ  – angle between X1 axis and X2 axis  
θ&  – angular velocity in the x-y plane  x – vertical displacement  
y – horizontal displacement 

 
LRF and Sonar Sensors 
The LRF operated on the principle of “time of flight” measurements. The field of view was 180°, 
and the maximum measurement range was 150 m. The angular resolution was selected at 0.5° by 
means of the software.  The statistical error of the LRF was ± 15 mm for distances of 1 m to 8 m, 
and ±4 cm for distances of 8 m to 20 m. The advantages of using a LRF as a navigation and 
localization sensor were its high scanning frequency (75 Hz) and the transfer of measurement 
data to the single-board computer occurred in real-time. 
 
A total of eight sonar sensors were mounted on the robot. The sensitivity and range of the sonar 
sensors were adjusted using a gain control adjuster located under the robot’s panel. An 
appropriate setting was used depending on the environment in which the robot was working. 
Low-gain settings reduced the robot’s ability to detect small obstacles, therefore, was useful 
when operating in noisy environments, or on uneven or highly reflective surface. As the 
sensitivity, the sonar sensors were able to detect smaller obstacles and objects at a distance 
further away. Each sonar sensor were multiplexed and the acquisition rate of the array was 25 Hz 
(40 milliseconds per sonar array) 
 
 
SOFTWARE DESIGN 
 
The overall software structure consisted of two parts, a low-level control operating system 
running on the microcontroller, and an autonomous navigation and localization program running 
on the single-board computer. ActivMedia Robotics Operating System (AROS) was running on 
the microcontroller (server) and ActivMedia Robotics Interface Application (ARIA) was running 
on the single-board computer (client). The microcontroller communicated with the single-board 
computer using special client-server communication packet protocols over a RS-232 interface. 
The server information packet (SIP) contained information about the sonar sensors measurement, 
gyroscope measurements, and odomteric measurements. ARIA was used to decode and interpret 
the information in the SIP and to send appropriate commands to the wheel motors for motion 
control. 
 
The ARIA program that was developed comprised basically of two threads; a LRF thread, which 
was used primarily for receiving and processing data from the LRF and a main thread, which 
performed a variety of functions for planning, and intelligent, purposeful control of the robot’s 
platform and its components (Figure 2 (a)). The main thread consisted of eleven functions and 
was executed every 100 ms (Figure 2 (b)).  This included functions for interpreting and analyzing 
the encoder and gyroscope readings encoded in the SIPs from the microcontroller by the Packet 
handler (1). The key handler (6) was used for interfacing the keyboard with ARIA for setting and 
changing modes of operations of the robot by pressing an appropriate key on the keyboard. 
Various modes such as automatic and manual operation were developed for testing and 



 

evaluating the robot. Appropriate keys on the keyboard were defined to allow the selection of the 
operation mode. The keyboard also served as a means of entering file names for data storage and 
for setting target coordinates manually for the robot. The function action handler (8) executed the 
tasks of obstacle detection, obstacle avoidance and all motion such as forward, reverse, and turns. 
The motion commands sent by the single-board computer was used to control the mobility of the 
robot, e.g. to set individual wheel speeds, or coordinated translational and rotational velocities; to 
change the robot’s absolute or relative heading; to move the robot to a specific distance or; to 
stop the robot.   
 

 
(a) 

 

 
(b) 

Figure 2. Block Diagram of the Software Structure 
 

With respect to localization using artificial landmarks, the LRF was included in the software to 
detect two landmarks (two cylindrical poles) and the appropriate equations were developed to 
compute the Cartesian coordinates of the robot relative to the poles, and finally these coordinates 
were transformed unto the global coordinate system. 

* this new thread mainly performs LRF 
packet handling 



 

   
Results from the wheel encoders, gyroscope and LRF were collected every 100 ms and written to 
a data file for analysis. 
 
Kalman Filter  
When using more than one sensor modality to obtain position orientation, such as a gyroscope 
and wheel encoders, an algorithm is needed to combine the readings to produce an accurate 
estimation of position. Typically a Kalman filter is used for this purpose. There are two main 
types of Kalman filters, the extended Kalman filter (also known as the direct Kalman filter) and 
indirect Kalman filter. The extended Kalman filter (EKF) does not correct the systematic encoder 
errors and gyroscope errors mutually, but merely minimize their errors using independent 
models. The indirect Kalman filter estimates the systematic errors of the encoders and the 
stochastic errors of the gyroscope exclusively and is fed back into the navigation system. In this 
case, the filter is not in the navigation loop but in the case of the EKF the filter is in the main 
navigation loop. Since the filter is out of the navigation loop with respect to the indirect 
approach, the encoder information will be available even if the filter fails or if it not used (Park et 
al, 1997). 
 
An indirect Kalman filter was used in this research. The Kalman filter was outside the main 
navigation loop. The encoder information was available even if the Kalman filter was not used. A 
block diagram is shown in Figure 3. 
 

 
Figure 3. The Kalman Filter in the Automatic Navigation System 

 
The microcontroller computed the position and orientation of the robot with data from the 
gyroscope and right and left wheel encoders. The computed position information were then 
encoded in separate SIPs, and sent to the single-board computer. The single-board computer 
decoded the SIPs to obtain an estimate of the robot’s position and then transformed the readings 
into a global coordinate frame. The coordinate transformation included transformation of the 
heading and Cartesian coordinates from a local coordinate frame to a global coordinate frame. 
When desired, the software was also used to compute only the measurements from the wheel 
encoders, or the gyroscope, or a combination of the wheel encoders and gyroscope. Considering 
the latter case using a combination of the gyroscope and encoder readings, a simple Kalman filter 



 

was used. The single-board computer used the information in the relevant SIPs to calculate the 
final pose of the robot. 
 
SYSTEM TESTS 
 
Several experiments were conducted with the P3-AT robot to gather data about the accuracy of 
the dead-reckoning method and the effectiveness of the gyroscope. All experiments were carried 
out indoor on a concrete surface on which a grid was outlined of size 6 m × 6 m consisting of 
cells 1 m × 1m. With the marked grid, actual distances could be measured quickly and easily. 
Two cylindrical poles with diameters of 8 cm and 12.5 cm were used for the landmark 
localisation technique described later. In some instances the robot was programmed to 
automatically drive to a goal and in other cases it was manually driven to achieve an X,Y 
coordinate with a specific final heading.  
 
Test 1: Accuracy of linear distance and angular displacement measurements.  
Objectives:  (1) To determine the effectiveness of combining a gyroscope and dead- reckoning 

measurements for position estimation when a robot moved in the X direction only 
without any changes in its Y coordinate 

 (2) To determine the effectiveness of combining a gyroscope and dead- reckoning 
measurements for heading when a robot was rotated on a specified spot 

Approach: The robot was programmed to automatically drive from it’s starting position (0,0,0 in 
the global frame) to desired distances of 1 m to 10 m in 1 m increment. Distances of 1 m interval 
were marked on the floor. The robot’s final position at each incremental value was noted by 
making a mark on the ground corresponding to the front wheel centre of the robot (the wheel 
centre was used as a benchmark). This distance was then measured and recorded. The test was 
conducted two times, first without using the gyroscope (dead-reckoning only), and secondly with 
dead-reckoning using gyroscope correction. The measured values for each method were recorded. 
The test was repeated three times and the average of the measurements were used for analysis. 

 
Figure 4. Angular Test Layout 

 
The robot was also programmed to rotate on a spot at desired angles. In order to measure the 
actual angle turned by the robot, a straight line was drawn on the ground (line 1), and after the 
robot had rotated a second line was drawn (line 2). The angle turned (θ) was measured, as 
illustrated in Figure 4. The angular test was conducted in a similar manner as the linear 
displacement test, with dead-reckoning only and dead-reckoning with gyroscope correction. 



 

 
The percentage error was computed to evaluate the dead-reckoning and dead-reckoning with 
gyroscope correction methods, using the expression below: 

 100%
(angle) distanceDesired

(angle) distanceMeasured(angle) distanceDesirederror Percentage ×
−

=  

 
Test 2: Accuracy of position determination on a grid layout. 
Objective: To determine the effectiveness of the combined gyroscope and dead reckoning 

measurements with changes in X,Y coordinates and heading angles 
Approach: The robot was manually driven (approximately 300mm/s) to                        
selected points on the grid. In this case, the centre of the robot (from where all positions were 
defined) was used as a benchmark. At its final position the centre of the robot was aligned to the 
intersection of the grid lines. A visible mark on the robot’s centre allowed for an easy alignment 
of its centre. The final heading for grid locations 1 to 8 was manually set at +90° and the final 
heading for grid location 9 to 16 was set at -90°. This was done to maintain consistent motion 
pattern for all the selected points. When the robot reached its final position, the wheel encoder 
readings (dead-reckoning only), and the dead-reckoning with gyroscope correction readings were 
recorded. The percentage error between the actual position and measured positions were 
computed. The measured position refers to the wheel encoder measurement, and the combined 
wheel encoder and gyroscope measurement. The percentage error was computed as follows: 
 

%100
distanceActual

distanceMeasureddistanceActualerrorPercentage ×
−

=  

 
Test 3: Gyroscope performance during maximum slip. 
Objective: To evaluate the performance of the gyroscope during maximum slip (100%)  
Approach: The robot was suspended so that the four wheels were not in contact with the ground. 
It was then “driven” manually (approximately 300 mm/s) for a period of time so that sufficient 
data was collected and stored in a data file. The robot was “driven” in the forward, reverse, left 
and right turn directions. In this case, the wheel encoders could not sense that the robot was not 
physically moving when suspended, but the gyroscope was able to sense this condition. Three 
types of data were collected, namely, wheel encoder readings, gyroscope readings, and the 
combined gyroscope and wheel encoders reading. The data was collected every cycle of 100 ms 
time duration. Data from every 3 cycles were analyzed, and a total of 97 cycles were required as 
it was the equivalent of a 360° rotation. 
 
Test 4: Landmark localization method for position determination in a grid layout 
Objectives: (1) To develop a landmark localization technique using a LRF and artificial 

landmarks 
  (2) To evaluate and compare the localization technique developed in (1)  
  with the fusion of sensory readings from the encoders and gyroscope                                      



 

 
 

Figure 5. Test Setup for the Landmark Localization Method 
 
Approach: Figure 5 shows the experimental setup. Two poles (used as artificial landmarks) were 
placed at coordinates of (4000, 2000) and (4000,-1000), respectively, with reference to the 
robot’s global coordinate frame.  

 
 

Figure 6. The Artificial Landmark Localization Method 
 
The separation of the landmarks represented as d was set at 3 m in the tests. The distance d could 
be varied depending on the work space available and the environment in which the robot was 
working. The distances between the landmarks and the centre of the LRF were defined as ra and 
rb for Pole A and Pole B respectively. θa and θb were defined as the angles between X1 axis of the 
local coordinate frame and the “line of sight” of the poles. In Figure 6 (a), θa was defined as a 
negative angle, and θb as a positive angle. Objects detected to the left were assigned a positive 
value and to the right negative values. The variables ra, rb, θa and θb were all known from the LRF 
data (Figure 5.6 (a)). In order to compute the position of the LRF (x2,y2) with respect to the poles 
the following equations were derived and used in the landmark localization algorithms.                                      
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The heading angle β was calculated using the following expressions: 
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Figure 6(b) shows the position of the LRF relative the robot’s local coordinate frame. The centre 
of the LRF was located at 160 mm,7 mm with respect to the local coordinate frame of the robot. 
The position of the centre of the LRF was subsequently transformed to the robot’s origin to 
obtain the position of the robot in the global coordinate frame. 
 
The robot was again driven to specific locations on the grid and the encoder, gyroscope and 
landmark localization system readings were all recorded and analyzed. 
 
 

RESULTS AND DISCUSSION 
 
TEST 1: ACCURACY OF LINEAR DISTANCE AND ANGULAR DISPLACEMENT 
MEASUREMENTS.   
When the robot was driven, the encoder readings were used to calculate its position and 
orientation. The gyroscope was also activated and changes in headings were recorded. A Kalman 
filter was used to incorporate the encoder values and gyroscope readings to compute the final 
position of the robot.  
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Figure 7. Percentage Error Between Desired and Measured Distances  
 
In Figure 7, the percentage errors between the desired distances and encoder readings varied from 
a minimum value of 7.17% to a maximum of 7.90% without gyroscope correction. The mean of 
the percentage errors was 7.60%. On the other hand, the percentage error between the desired 
distances and the encoder readings with gyroscope correction varied from a minimum of 5.18% 
to a maximum of 6.36%. The mean percentage error was 5.92%. Obviously, a difference of 
1.68% percentage error between the dead-reckoning method and dead-reckoning with gyroscope 
correction. The dead reckoning system would normally have larger errors over a long period of 
time. With respect to short distances, the dead reckoning method was reliable. Preliminary tests 
on the robot had indicated that the percentage errors obtained from the dead reckoning method 
varied from 20% to 30% for a period of time ranging between 5-15 minutes. This was much 
larger than the 7.60% as was obtained and can be attributed to the fact that there was no change 
in the robot’s heading and the experiment was not conducted over a long period of time. 
 
Angular displacement 
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Figure 8. Percentage Error Between Desired and Measured Angles 



 

 
The results from the angular displacement test is shown in Figure 8. The results indicate that the 
average percentage error between the desired angle and the measured angle computed using 
dead-reckoning with gyroscope correction was 2.50%. However, the average percentage error 
between the desired angle and the angle calculated form the encoder dead-reckoning approach 
was found to be 4.69%. Figure 8 illustrates that the percentage errors using the combination of 
the two sensors was much lower than those with just the encoder readings.  
 
TEST 2: ACCURACY OF POSITION DETERMINATION ON A GRID LAYOUT. 
This experiment was conducted on a grid layout for the P3-AT robot with changes in both 
heading and X-Y coordinates. The robot started from position (0,0) and traveled to the 19 
locations respectively. Grid position 1 to 16 were all set at a fix X coordinate value of 4000 mm 
and the heading was set at +90 for locations 1-8 and -90 for locations 9-16. 
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Figure 9. Comparison among Robot’s Actual Position, Position from the Encoder, and 

Position from Encoder with Gyroscope Correction (units in mm) 
 
The test results are shown Figure 9, on a global coordinate frame (X2,Y2). The data obtained from 
dead-reckoning with gyroscope correction were in closer proximity to the actual position of the 
robot.  
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Figure 10. Percentage Error Between Measured and Actual Distances (1-16) 
 
Figure 10 shows the percentage errors for the gird locations 1-16. The encoder readings when 
compared to the actual position of the robot had a percentage error that varied between 5.94% 
and 7.98% (mean=6.71%) whilst the position estimation using dead-reckoning with gyroscope 
correction ranged from 2.51% to 4.39% (mean=3.57%). This was a difference of 3.14% between 
the two methods, compared to a difference of 1.68% obtained in Test 1. The reason for the large 
difference was that in this experiment there were changes in the X,Y coordinate as well as the 
heading. This incurred a higher percentage of errors in the encoder readings.  
 
TEST 3: GYROSCOPE PERFORMANCE DURING MAXIMUM SLIP. 
This test was conducted at an average rotational speed of 37 mm/s with the wheels suspended off 
the ground, whilst the robot was driven manually.  
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Figure 11. Gyroscope Correction 



 

 
As time increased the encoders recorded a change in heading calculated from its dead- reckoning 
approach. The change in heading was quite consistent, resulting in a straight line since the 
rotational velocity was kept constant. The gyroscope readings according to Figure 11 fluctuated 
between 0.4° and 0.6°. This may have been caused by a drift due to temperature changes. 
Although the gyroscope had a temperature sensor to compensate for the drift, other factors such 
as vibration and the accuracy of the gyroscope could be attributed to this fluctuation in readings. 
When the encoder and gyroscope readings were fused together the resulting heading was 
computed as 1°. This was constant for the data examined during this time period of the 
experiment. 
 
TEST 4: LANDMARK LOCALIZATION METHOD FOR POSITION ESTIMATION IN A 
GRID LAYOUT 
In this test the robot was manually driven to fixed locations on the grid as show in Figure 12. 
This was very much similar to the experiment described in Test 2 with the exception that the 
system now comprised of a landmark localization component to ascertain position and 
orientation. Eighteen grid locations were selected, and the X,Y coordinates and heading angles 
were all recorded. 
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Figure 12. Results from the Artificial Landmark Localization Method (units in mm) 
 
Figure 12 illustrates the final X and Y coordinates of the robot on the grid determined by the 
encoder, encoder with gyroscope correction, and the landmark localization measurements, 
respectively. The landmark localization technique lay in the closest proximity to the actual 
position of the robot.  



 

 
Analysis of all the data from this test showed that there was a significant increase in the accuracy 
of the position computation using the landmark localization technique. The mean percentage 
error between the actual and measured values for the landmark localization method for the X and 
Y coordinates were 1.95% and 1.93% respectively. The percentage error for the X and Y 
coordinates with the encoder readings was 8.59% and 10.38% respectively, whilst with the 
encoder with gyroscope correction was 6.80% and 7.93% respectively. This translates to within 
2-3.5 cm accuracy for the landmark localization method with respect to the actual positions 
employed in this experimental layout.   
 

Table 1. Summary of Percentage Errors 
 

Percentage error (%) Position estimation method x Y 
Dead reckoning 8.59 10.38 
Dead reckoning with gyroscope 
correction 6.8 7.93 
Artificial landmark localization 1.95 1.93 

 
In summary, the landmark localization method based on a LRF offered the most accurate 
estimation of position and orientation (Table 1). The LRF was used to determine: 1) the distances 
and angles of the landmarks relative to the robot and 2) to compute the position and orientation of 
the robot in a global coordinate frame. Dead-reckoning on the other hand, could be very reliable 
for short distances and environments with minimum slip. However, as time increases, the errors 
using only the encoders tend to accumulate. This problem is overcome by use of the localization 
technique, which was not affected by the conditions in which the robot was expected to work (i.e. 
surface undulation and slippery environments). The accuracy and resolution of the LRF (or any 
other localization sensor such as a CCD camera or sonar sensor) were the limiting factors that 
influenced the accuracy of the position estimations. 
 
It must be noted that in this experiment the landmarks (two poles) were placed at the same X 
coordinate in the reference frame and the LRF on the robot had to be able to detect these two 
poles simultaneously in order to compute its position and orientation. If the poles were not 
detected, the resulting position computation produced an error. This was a setback as the motion 
and path of the robot would be limited and would be impractical and unsuitable for real world 
applications. This disadvantage could be overcome by placing several known landmarks around 
the robot’s working environment, thereby allowing the robot much more flexibility and path 
planning capabilities. The onboard gyroscope was a single axis device that detected the yaw rate. 
This worked satisfactorily as only heading changes were required. In events of undulating terrain, 
a three-axis gyroscope would be very useful, as slopes can be detected, thus speed and direction 
could be corrected based on information received from the gyroscope. Overturn of tractors is a 
very common mishap in agricultural operations resulting in loss of time, money and even harmful 
to the operators. In the case of an autonomous navigation system safety is of paramount 
importance, therefore slope detection is crucial and should be incorporated into the control 
system.  
 



 

The use of odometric measurements for navigational purposes poses a few challenges in 
agricultural operations due to a number of factors. First of all, the mere nature of dead- reckoning 
technique requires a wheel to be in contact with the ground and any changes in the rolling 
circumference would induce some errors in the position of the vehicle. Considering the 
conditions in a typical agricultural field with high soil moisture content and the adhesive 
properties of soil, it is quite natural that at some times soil will stick to the tires on the wheel and 
in effect increase the rolling radius. The fusion therefore of sensory data seems like a feasible 
solution as was employed in the navigation system. A Kalman filter can be used to fuse data from 
the encoders and a gyroscope to improve the accuracy of the position and orientation estimate of 
the vehicle.  
 
 
CONCLUSIONS 
 An indirect Kalman filter was used to fuse dead-reckoning and gyroscope measurements to 
produce an estimate of a mobile robot’s position and orientation. Results from the test showed 
that the improvements made by the encoder readings with gyroscope correction when compared 
to only dead- reckoning method was not very significant as the encoder readings tend to be 
reliable for short distances and also slip was minimal.  
 
A landmark localization technique for computing position and orientation of a mobile robot was 
successfully developed and tested in an indoor environment. Two artificial landmarks were 
placed at known positions with respect to the global coordinate frame of the robot. A LRF was 
used to detect the positions of the two landmarks. The distances of the landmarks from the centre 
of the LRF were determined using range information. The angles between the line of sight of the 
landmarks and the X1 axis of the local coordinate frame were also computed. Suitable equations 
were derived and included in the localization algorithm to compute the position and orientation of 
the robot in a global coordinate frame. The results from the tests showed that the position 
estimation using this technique was much more accurate when compared to the dead-reckoning 
and dead-reckoning with gyroscope correction approaches. The percentage errors between the 
actual positions and the computed positions for the X and Y coordinates were found to be 1.95% 
and 1.93% respectively. This percentage error was significantly less when compared to the 
percentage errors obtained from the dead-reckoning with gyroscope correction measurements. 
This was a difference of 4.58% and 6.0% for the X and Y coordinates respectively between the 
two methods. This was a significant difference due to the fact that the landmark localization 
method using the LRF was not dependent on the operating environment such as slip and 
undulation. 
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